Skip to main content
Top
Published in: Annals of Intensive Care 1/2019

Open Access 01-12-2019 | Intra-Aortic Balloon | Research

Targeted temperature management guided by the severity of hyperlactatemia for out-of-hospital cardiac arrest patients: a post hoc analysis of a nationwide, multicenter prospective registry

Authors: Tomoya Okazaki, Toru Hifumi, Kenya Kawakita, Yasuhiro Kuroda, the Japanese Association for Acute Medicine out-of-hospital cardiac arrest (JAAM-OHCA) registry

Published in: Annals of Intensive Care | Issue 1/2019

Login to get access

Abstract

Background

The International Liaison Committee on Resuscitation guidelines recommend target temperature management (TTM) between 32 and 36 °C for patients after out-of-hospital cardiac arrest, but did not indicate patient-specific temperatures. The association of serum lactate concentration and neurological outcome in out-of-hospital cardiac arrest patient has been reported. The study aim was to investigate the benefit of 32–34 °C in patients with various degrees of hyperlactatemia compared to 35–36 °C.

Methods

This study was a post hoc analysis of the Japanese Association for Acute Medicine out-of-hospital cardiac arrest registry between June 2014 and December 2015. Patients with complete targeted temperature management and lactate data were eligible. Patients were stratified to mild (< 7 mmol/l), moderate (< 12 mmol/l), or severe (≥ 12 mmol/l) hyperlactatemia group based on lactate concentration after return of spontaneous circulation. They were subdivided into 32–34 °C or 35–36 °C groups. The primary endpoint was an adjusted predicted probability of 30-day favorable neurological outcome, defined as a cerebral performance category score of 1 or 2.

Result

Of 435 patients, 139 had mild, 182 had moderate, and 114 had severe hyperlactatemia. One hundred and eight (78%) with mild, 128 with moderate (70%), and 83 with severe hyperlactatemia (73%) received TTM at 32–34 °C. The adjusted predicted probability of a 30-day favorable neurological outcome following severe hyperlactatemia was significantly greater with 32–34 °C (27.4%, 95% confidence interval: 22.0–32.8%) than 35–36 °C (12.4%, 95% CI 3.5–21.2%; p = 0.005). The differences in outcomes in those with mild and moderate hyperlactatemia were not significant.

Conclusions

In OHCA patients with severe hyperlactatemia, the adjusted predicted probability of 30-day favorable neurological outcome was greater with TTM at 32–34 °C than with TTM at 35–36 °C. Further evaluation is needed to determine whether TTM at 32–34 °C can improve neurological outcomes in patients with severe hyperlactatemia after out-of-hospital cardiac arrest.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kitamura T, Iwami T, Atsumi T, Endo T, Kanna T, Kuroda Y, et al. The profile of Japanese Association for Acute Medicine—out-of-hospital cardiac arrest registry in 2014–2015. Acute Med Surg. 2018;5(3):249–58.PubMedPubMedCentralCrossRef Kitamura T, Iwami T, Atsumi T, Endo T, Kanna T, Kuroda Y, et al. The profile of Japanese Association for Acute Medicine—out-of-hospital cardiac arrest registry in 2014–2015. Acute Med Surg. 2018;5(3):249–58.PubMedPubMedCentralCrossRef
2.
go back to reference Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549–56.CrossRef Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549–56.CrossRef
3.
go back to reference Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346(8):557–63.PubMedCrossRef Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346(8):557–63.PubMedCrossRef
4.
go back to reference Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206.PubMedCrossRef Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206.PubMedCrossRef
5.
go back to reference Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, et al. Part 8: post-cardiac arrest care: 2015 American Heart Association Guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S465–82.PubMedPubMedCentralCrossRef Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, et al. Part 8: post-cardiac arrest care: 2015 American Heart Association Guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S465–82.PubMedPubMedCentralCrossRef
6.
go back to reference Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VR, Deakin CD, et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015: Section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation. 2015;95:202–22.PubMedCrossRef Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VR, Deakin CD, et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015: Section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation. 2015;95:202–22.PubMedCrossRef
8.
go back to reference Testori C, Sterz F, Holzer M, Losert H, Arrich J, Herkner H, et al. The beneficial effect of mild therapeutic hypothermia depends on the time of complete circulatory standstill in patients with cardiac arrest. Resuscitation. 2012;83(5):596–601.PubMedCrossRef Testori C, Sterz F, Holzer M, Losert H, Arrich J, Herkner H, et al. The beneficial effect of mild therapeutic hypothermia depends on the time of complete circulatory standstill in patients with cardiac arrest. Resuscitation. 2012;83(5):596–601.PubMedCrossRef
9.
go back to reference Kjaergaard J, Nielsen N, Winther-Jensen M, Wanscher M, Pellis T, Kuiper M, et al. Impact of time to return of spontaneous circulation on neuroprotective effect of targeted temperature management at 33 or 36 degrees in comatose survivors of out-of hospital cardiac arrest. Resuscitation. 2015;96:310–6.PubMedCrossRef Kjaergaard J, Nielsen N, Winther-Jensen M, Wanscher M, Pellis T, Kuiper M, et al. Impact of time to return of spontaneous circulation on neuroprotective effect of targeted temperature management at 33 or 36 degrees in comatose survivors of out-of hospital cardiac arrest. Resuscitation. 2015;96:310–6.PubMedCrossRef
10.
go back to reference Dankiewicz J, Friberg H, Belohlavek J, Walden A, Hassager C, Cronberg T, et al. Time to start of cardiopulmonary resuscitation and the effect of target temperature management at 33 degrees C and 36 degrees C. Resuscitation. 2016;99:44–9.PubMedCrossRef Dankiewicz J, Friberg H, Belohlavek J, Walden A, Hassager C, Cronberg T, et al. Time to start of cardiopulmonary resuscitation and the effect of target temperature management at 33 degrees C and 36 degrees C. Resuscitation. 2016;99:44–9.PubMedCrossRef
11.
go back to reference Kaneko T, Kasaoka S, Nakahara T, Sawano H, Tahara Y, Hase M, et al. Effectiveness of lower target temperature therapeutic hypothermia in post-cardiac arrest syndrome patients with a resuscitation interval of ≤ 30 min. J Intensive Care. 2015;3(1):28.PubMedPubMedCentralCrossRef Kaneko T, Kasaoka S, Nakahara T, Sawano H, Tahara Y, Hase M, et al. Effectiveness of lower target temperature therapeutic hypothermia in post-cardiac arrest syndrome patients with a resuscitation interval of ≤ 30 min. J Intensive Care. 2015;3(1):28.PubMedPubMedCentralCrossRef
12.
go back to reference Nishikimi M, Ogura T, Nishida K, Takahashi K, Fukaya K, Liu K, et al. Differential effect of mild therapeutic hypothermia depending on the findings of hypoxic encephalopathy on early CT images in patients with post-cardiac arrest syndrome. Resuscitation. 2018;128:11–5.PubMedCrossRef Nishikimi M, Ogura T, Nishida K, Takahashi K, Fukaya K, Liu K, et al. Differential effect of mild therapeutic hypothermia depending on the findings of hypoxic encephalopathy on early CT images in patients with post-cardiac arrest syndrome. Resuscitation. 2018;128:11–5.PubMedCrossRef
14.
go back to reference Mullner M, Sterz F, Domanovits H, Behringer W, Binder M, Laggner AN. The association between blood lactate concentration on admission, duration of cardiac arrest, and functional neurological recovery in patients resuscitated from ventricular fibrillation. Intensive Care Med. 1997;23(11):1138–43.PubMedCrossRef Mullner M, Sterz F, Domanovits H, Behringer W, Binder M, Laggner AN. The association between blood lactate concentration on admission, duration of cardiac arrest, and functional neurological recovery in patients resuscitated from ventricular fibrillation. Intensive Care Med. 1997;23(11):1138–43.PubMedCrossRef
15.
go back to reference Prause G, Ratzenhofer-Comenda B, Smolle-Juttner F, Heydar-Fadai J, Wildner G, Spernbauer P, et al. Comparison of lactate or BE during out-of-hospital cardiac arrest to determine metabolic acidosis. Resuscitation. 2001;51(3):297–300.PubMedCrossRef Prause G, Ratzenhofer-Comenda B, Smolle-Juttner F, Heydar-Fadai J, Wildner G, Spernbauer P, et al. Comparison of lactate or BE during out-of-hospital cardiac arrest to determine metabolic acidosis. Resuscitation. 2001;51(3):297–300.PubMedCrossRef
16.
go back to reference Shinozaki K, Oda S, Sadahiro T, Nakamura M, Hirayama Y, Watanabe E, et al. Blood ammonia and lactate levels on hospital arrival as a predictive biomarker in patients with out-of-hospital cardiac arrest. Resuscitation. 2011;82(4):404–9.PubMedCrossRef Shinozaki K, Oda S, Sadahiro T, Nakamura M, Hirayama Y, Watanabe E, et al. Blood ammonia and lactate levels on hospital arrival as a predictive biomarker in patients with out-of-hospital cardiac arrest. Resuscitation. 2011;82(4):404–9.PubMedCrossRef
17.
go back to reference Lee DH, Cho IS, Lee SH, Min YI, Min JH, Kim SH, et al. Correlation between initial serum levels of lactate after return of spontaneous circulation and survival and neurological outcomes in patients who undergo therapeutic hypothermia after cardiac arrest. Resuscitation. 2015;88:143–9.PubMedCrossRef Lee DH, Cho IS, Lee SH, Min YI, Min JH, Kim SH, et al. Correlation between initial serum levels of lactate after return of spontaneous circulation and survival and neurological outcomes in patients who undergo therapeutic hypothermia after cardiac arrest. Resuscitation. 2015;88:143–9.PubMedCrossRef
18.
go back to reference Kitamura T, Iwami T, Kawamura T, Nagao K, Tanaka H, Hiraide A. Nationwide public-access defibrillation in Japan. N Engl J Med. 2010;362(11):994–1004.PubMedCrossRef Kitamura T, Iwami T, Kawamura T, Nagao K, Tanaka H, Hiraide A. Nationwide public-access defibrillation in Japan. N Engl J Med. 2010;362(11):994–1004.PubMedCrossRef
19.
go back to reference Perkins GD, Jacobs IG, Nadkarni VM, Berg RA, Bhanji F, Biarent D, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein Resuscitation Registry Templates for Out-of-Hospital Cardiac Arrest: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Circulation. 2015;132(13):1286–300.PubMedCrossRef Perkins GD, Jacobs IG, Nadkarni VM, Berg RA, Bhanji F, Biarent D, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein Resuscitation Registry Templates for Out-of-Hospital Cardiac Arrest: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Circulation. 2015;132(13):1286–300.PubMedCrossRef
20.
21.
go back to reference Oh SH, Park KN, Lim J, Choi SP, Oh JS, Cho IS, et al. The impact of sex and age on neurological outcomes in out-of-hospital cardiac arrest patients with targeted temperature management. Crit Care. 2017;21(1):272.PubMedPubMedCentralCrossRef Oh SH, Park KN, Lim J, Choi SP, Oh JS, Cho IS, et al. The impact of sex and age on neurological outcomes in out-of-hospital cardiac arrest patients with targeted temperature management. Crit Care. 2017;21(1):272.PubMedPubMedCentralCrossRef
22.
go back to reference Inoue A, Hifumi T, Yonemoto N, Kuroda Y, Kawakita K, Sawano H, et al. The impact of heart rate response during 48-hour rewarming phase of therapeutic hypothermia on neurologic outcomes in out-of-hospital cardiac arrest patients. Crit Care Med. 2018;46(9):e881–8.PubMedCrossRef Inoue A, Hifumi T, Yonemoto N, Kuroda Y, Kawakita K, Sawano H, et al. The impact of heart rate response during 48-hour rewarming phase of therapeutic hypothermia on neurologic outcomes in out-of-hospital cardiac arrest patients. Crit Care Med. 2018;46(9):e881–8.PubMedCrossRef
23.
go back to reference Malta Hansen C, Kragholm K, Dupre ME, Pearson DA, Tyson C, Monk L, et al. Association of bystander and first-responder efforts and outcomes according to sex: results from the north carolina heart rescue statewide quality improvement initiative. J Am Heart Assoc. 2018;7(18):e009873.PubMedPubMedCentralCrossRef Malta Hansen C, Kragholm K, Dupre ME, Pearson DA, Tyson C, Monk L, et al. Association of bystander and first-responder efforts and outcomes according to sex: results from the north carolina heart rescue statewide quality improvement initiative. J Am Heart Assoc. 2018;7(18):e009873.PubMedPubMedCentralCrossRef
24.
go back to reference Kragholm K, Wissenberg M, Mortensen RN, Fonager K, Jensen SE, Rajan S, et al. Return to work in out-of-hospital cardiac arrest survivors: a nationwide register-based follow-up study. Circulation. 2015;131(19):1682–90.PubMedCrossRef Kragholm K, Wissenberg M, Mortensen RN, Fonager K, Jensen SE, Rajan S, et al. Return to work in out-of-hospital cardiac arrest survivors: a nationwide register-based follow-up study. Circulation. 2015;131(19):1682–90.PubMedCrossRef
25.
go back to reference Nikolaou N, Dainty KN, Couper K, Morley P, Tijssen J, Vaillancourt C. A systematic review and meta-analysis of the effect of dispatcher-assisted CPR on outcomes from sudden cardiac arrest in adults and children. Resuscitation. 2019;138:82–105.PubMedCrossRef Nikolaou N, Dainty KN, Couper K, Morley P, Tijssen J, Vaillancourt C. A systematic review and meta-analysis of the effect of dispatcher-assisted CPR on outcomes from sudden cardiac arrest in adults and children. Resuscitation. 2019;138:82–105.PubMedCrossRef
26.
go back to reference Ro YS, Shin SD, Lee YJ, Lee SC, Song KJ, Ryoo HW, et al. Effect of dispatcher-assisted cardiopulmonary resuscitation program and location of out-of-hospital cardiac arrest on survival and neurologic outcome. Ann Emerg Med. 2017;69(1):52–61.PubMedCrossRef Ro YS, Shin SD, Lee YJ, Lee SC, Song KJ, Ryoo HW, et al. Effect of dispatcher-assisted cardiopulmonary resuscitation program and location of out-of-hospital cardiac arrest on survival and neurologic outcome. Ann Emerg Med. 2017;69(1):52–61.PubMedCrossRef
27.
go back to reference Nakahara S, Tomio J, Ichikawa M, Nakamura F, Nishida M, Takahashi H, et al. Association of bystander interventions with neurologically intact survival among patients with Bystander-Witnessed Out-of-Hospital Cardiac Arrest in Japan. JAMA. 2015;314(3):247–54.PubMedCrossRef Nakahara S, Tomio J, Ichikawa M, Nakamura F, Nishida M, Takahashi H, et al. Association of bystander interventions with neurologically intact survival among patients with Bystander-Witnessed Out-of-Hospital Cardiac Arrest in Japan. JAMA. 2015;314(3):247–54.PubMedCrossRef
28.
go back to reference Dumas F, Rea TD. Long-term prognosis following resuscitation from out-of-hospital cardiac arrest: role of aetiology and presenting arrest rhythm. Resuscitation. 2012;83(8):1001–5.PubMedCrossRef Dumas F, Rea TD. Long-term prognosis following resuscitation from out-of-hospital cardiac arrest: role of aetiology and presenting arrest rhythm. Resuscitation. 2012;83(8):1001–5.PubMedCrossRef
29.
go back to reference Spaite DW, Bobrow BJ, Stolz U, Berg RA, Sanders AB, Kern KB, et al. Statewide regionalization of postarrest care for out-of-hospital cardiac arrest: association with survival and neurologic outcome. Ann Emerg Med. 2014;64(5):496–506.PubMedCrossRef Spaite DW, Bobrow BJ, Stolz U, Berg RA, Sanders AB, Kern KB, et al. Statewide regionalization of postarrest care for out-of-hospital cardiac arrest: association with survival and neurologic outcome. Ann Emerg Med. 2014;64(5):496–506.PubMedCrossRef
30.
go back to reference Grimaldi D, Dumas F, Perier MC, Charpentier J, Varenne O, Zuber B, et al. Short- and long-term outcome in elderly patients after out-of-hospital cardiac arrest: a cohort study. Crit Care Med. 2014;42(11):2350–7.PubMedCrossRef Grimaldi D, Dumas F, Perier MC, Charpentier J, Varenne O, Zuber B, et al. Short- and long-term outcome in elderly patients after out-of-hospital cardiac arrest: a cohort study. Crit Care Med. 2014;42(11):2350–7.PubMedCrossRef
31.
go back to reference Maria V, Pasquale B, Carmine I, Giuseppe S. Epinephrine for out of hospital cardiac arrest: a systematic review and meta-analysis of randomized controlled trials. Resuscitation. 2019;136:54–60.PubMedCrossRef Maria V, Pasquale B, Carmine I, Giuseppe S. Epinephrine for out of hospital cardiac arrest: a systematic review and meta-analysis of randomized controlled trials. Resuscitation. 2019;136:54–60.PubMedCrossRef
32.
go back to reference Hasegawa K, Hiraide A, Chang Y, Brown DF. Association of prehospital advanced airway management with neurologic outcome and survival in patients with out-of-hospital cardiac arrest. JAMA. 2013;309(3):257–66.PubMedCrossRef Hasegawa K, Hiraide A, Chang Y, Brown DF. Association of prehospital advanced airway management with neurologic outcome and survival in patients with out-of-hospital cardiac arrest. JAMA. 2013;309(3):257–66.PubMedCrossRef
33.
go back to reference Patterson C, Pitts SR, Akhter M. Alternative effects of transportation time on out-of-hospital cardiac arrests. Resuscitation. 2017;117:e5.PubMedCrossRef Patterson C, Pitts SR, Akhter M. Alternative effects of transportation time on out-of-hospital cardiac arrests. Resuscitation. 2017;117:e5.PubMedCrossRef
34.
go back to reference Cournoyer A, Notebaert E, de Montigny L, Ross D, Cossette S, Londei-Leduc L, et al. Impact of the direct transfer to percutaneous coronary intervention-capable hospitals on survival to hospital discharge for patients with out-of-hospital cardiac arrest. Resuscitation. 2018;125:28–33.PubMedCrossRef Cournoyer A, Notebaert E, de Montigny L, Ross D, Cossette S, Londei-Leduc L, et al. Impact of the direct transfer to percutaneous coronary intervention-capable hospitals on survival to hospital discharge for patients with out-of-hospital cardiac arrest. Resuscitation. 2018;125:28–33.PubMedCrossRef
35.
go back to reference Wissenberg M, Folke F, Hansen CM, Lippert FK, Kragholm K, Risgaard B, et al. Survival after out-of-hospital cardiac arrest in relation to age and early identification of patients with minimal chance of long-term survival. Circulation. 2015;131(18):1536–45.PubMedCrossRef Wissenberg M, Folke F, Hansen CM, Lippert FK, Kragholm K, Risgaard B, et al. Survival after out-of-hospital cardiac arrest in relation to age and early identification of patients with minimal chance of long-term survival. Circulation. 2015;131(18):1536–45.PubMedCrossRef
36.
go back to reference Gregers E, Kjaergaard J, Lippert F, Thomsen JH, Kober L, Wanscher M, et al. Refractory out-of-hospital cardiac arrest with ongoing cardiopulmonary resuscitation at hospital arrival-survival and neurological outcome without extracorporeal cardiopulmonary resuscitation. Crit Care. 2018;22(1):242.PubMedPubMedCentralCrossRef Gregers E, Kjaergaard J, Lippert F, Thomsen JH, Kober L, Wanscher M, et al. Refractory out-of-hospital cardiac arrest with ongoing cardiopulmonary resuscitation at hospital arrival-survival and neurological outcome without extracorporeal cardiopulmonary resuscitation. Crit Care. 2018;22(1):242.PubMedPubMedCentralCrossRef
37.
go back to reference Hifumi T, Kuroda Y, Kawakita K, Sawano H, Tahara Y, Hase M, et al. Effect of admission glasgow coma scale motor score on neurological outcome in out-of-hospital cardiac arrest patients receiving therapeutic hypothermia. Circ J. 2015;79(10):2201–8.PubMedCrossRef Hifumi T, Kuroda Y, Kawakita K, Sawano H, Tahara Y, Hase M, et al. Effect of admission glasgow coma scale motor score on neurological outcome in out-of-hospital cardiac arrest patients receiving therapeutic hypothermia. Circ J. 2015;79(10):2201–8.PubMedCrossRef
38.
go back to reference Jaeger D, Dumas F, Escutnaire J, Sadoune S, Lauvray A, Elkhoury C, et al. Benefit of immediate coronary angiography after out-of-hospital cardiac arrest in France: a nationwide propensity score analysis from the ReAC Registry. Resuscitation. 2018;126:90–7.PubMedCrossRef Jaeger D, Dumas F, Escutnaire J, Sadoune S, Lauvray A, Elkhoury C, et al. Benefit of immediate coronary angiography after out-of-hospital cardiac arrest in France: a nationwide propensity score analysis from the ReAC Registry. Resuscitation. 2018;126:90–7.PubMedCrossRef
39.
go back to reference Sakamoto T, Morimura N, Nagao K, Asai Y, Yokota H, Nara S, et al. Extracorporeal cardiopulmonary resuscitation versus conventional cardiopulmonary resuscitation in adults with out-of-hospital cardiac arrest: a prospective observational study. Resuscitation. 2014;85(6):762–8.PubMedCrossRef Sakamoto T, Morimura N, Nagao K, Asai Y, Yokota H, Nara S, et al. Extracorporeal cardiopulmonary resuscitation versus conventional cardiopulmonary resuscitation in adults with out-of-hospital cardiac arrest: a prospective observational study. Resuscitation. 2014;85(6):762–8.PubMedCrossRef
40.
go back to reference Roberts BW, Kilgannon JH, Chansky ME, Mittal N, Wooden J, Trzeciak S. Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post-cardiac arrest syndrome. Circulation. 2013;127(21):2107–13.PubMedCrossRef Roberts BW, Kilgannon JH, Chansky ME, Mittal N, Wooden J, Trzeciak S. Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post-cardiac arrest syndrome. Circulation. 2013;127(21):2107–13.PubMedCrossRef
41.
go back to reference McKenzie N, Williams TA, Tohira H, Ho KM, Finn J. A systematic review and meta-analysis of the association between arterial carbon dioxide tension and outcomes after cardiac arrest. Resuscitation. 2017;111:116–26.PubMedCrossRef McKenzie N, Williams TA, Tohira H, Ho KM, Finn J. A systematic review and meta-analysis of the association between arterial carbon dioxide tension and outcomes after cardiac arrest. Resuscitation. 2017;111:116–26.PubMedCrossRef
42.
go back to reference Inoue A, Hifumi T, Kuroda Y, Nishimoto N, Kawakita K, Yamashita S, et al. Mild decrease in heart rate during early phase of targeted temperature management following tachycardia on admission is associated with unfavorable neurological outcomes after severe traumatic brain injury: a post hoc analysis of a multicenter randomized controlled trial. Crit Care. 2018;22(1):352.PubMedPubMedCentralCrossRef Inoue A, Hifumi T, Kuroda Y, Nishimoto N, Kawakita K, Yamashita S, et al. Mild decrease in heart rate during early phase of targeted temperature management following tachycardia on admission is associated with unfavorable neurological outcomes after severe traumatic brain injury: a post hoc analysis of a multicenter randomized controlled trial. Crit Care. 2018;22(1):352.PubMedPubMedCentralCrossRef
43.
go back to reference Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48(3):452–8.PubMedCrossRef Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48(3):452–8.PubMedCrossRef
44.
go back to reference Drennan IR, Lin S, Thorpe KE, Morrison LJ. The effect of time to defibrillation and targeted temperature management on functional survival after out-of-hospital cardiac arrest. Resuscitation. 2014;85(11):1623–8.PubMedCrossRef Drennan IR, Lin S, Thorpe KE, Morrison LJ. The effect of time to defibrillation and targeted temperature management on functional survival after out-of-hospital cardiac arrest. Resuscitation. 2014;85(11):1623–8.PubMedCrossRef
45.
go back to reference Dell’Anna AM, Sandroni C, Lamanna I, Belloni I, Donadello K, Creteur J, et al. Prognostic implications of blood lactate concentrations after cardiac arrest: a retrospective study. Ann Intensive Care. 2017;7(1):101.PubMedPubMedCentralCrossRef Dell’Anna AM, Sandroni C, Lamanna I, Belloni I, Donadello K, Creteur J, et al. Prognostic implications of blood lactate concentrations after cardiac arrest: a retrospective study. Ann Intensive Care. 2017;7(1):101.PubMedPubMedCentralCrossRef
46.
go back to reference Bellomo R, Martensson J, Eastwood GM. Metabolic and electrolyte disturbance after cardiac arrest: how to deal with it. Best Pract Res Clin Anaesthesiol. 2015;29(4):471–84.PubMedCrossRef Bellomo R, Martensson J, Eastwood GM. Metabolic and electrolyte disturbance after cardiac arrest: how to deal with it. Best Pract Res Clin Anaesthesiol. 2015;29(4):471–84.PubMedCrossRef
47.
go back to reference Orban JC, Novain M, Cattet F, Plattier R, Nefzaoui M, Hyvernat H, et al. Association of serum lactate with outcome after out-of-hospital cardiac arrest treated with therapeutic hypothermia. PLoS ONE. 2017;12(3):e0173239.PubMedPubMedCentralCrossRef Orban JC, Novain M, Cattet F, Plattier R, Nefzaoui M, Hyvernat H, et al. Association of serum lactate with outcome after out-of-hospital cardiac arrest treated with therapeutic hypothermia. PLoS ONE. 2017;12(3):e0173239.PubMedPubMedCentralCrossRef
48.
go back to reference Kaji AH, Hanif AM, Bosson N, Ostermayer D, Niemann JT. Predictors of neurologic outcome in patients resuscitated from out-of-hospital cardiac arrest using classification and regression tree analysis. Am J Cardiol. 2014;114(7):1024–8.PubMedCrossRef Kaji AH, Hanif AM, Bosson N, Ostermayer D, Niemann JT. Predictors of neurologic outcome in patients resuscitated from out-of-hospital cardiac arrest using classification and regression tree analysis. Am J Cardiol. 2014;114(7):1024–8.PubMedCrossRef
49.
go back to reference Hifumi T, Kawakita K, Yoda T, Okazaki T, Kuroda Y. Association of brain metabolites with blood lactate and glucose levels with respect to neurological outcomes after out-of-hospital cardiac arrest: a preliminary microdialysis study. Resuscitation. 2017;110:26–31.PubMedCrossRef Hifumi T, Kawakita K, Yoda T, Okazaki T, Kuroda Y. Association of brain metabolites with blood lactate and glucose levels with respect to neurological outcomes after out-of-hospital cardiac arrest: a preliminary microdialysis study. Resuscitation. 2017;110:26–31.PubMedCrossRef
50.
go back to reference Kim YM, Youn CS, Kim SH, Lee BK, Cho IS, Cho GC, et al. Adverse events associated with poor neurological outcome during targeted temperature management and advanced critical care after out-of-hospital cardiac arrest. Crit Care. 2015;19:283.PubMedPubMedCentralCrossRef Kim YM, Youn CS, Kim SH, Lee BK, Cho IS, Cho GC, et al. Adverse events associated with poor neurological outcome during targeted temperature management and advanced critical care after out-of-hospital cardiac arrest. Crit Care. 2015;19:283.PubMedPubMedCentralCrossRef
51.
go back to reference Thomsen JH, Kjaergaard J, Graff C, Pehrson S, Erlinge D, Wanscher M, et al. Ventricular ectopic burden in comatose survivors of out-of-hospital cardiac arrest treated with targeted temperature management at 33 degrees C and 36 degrees C. Resuscitation. 2016;102:98–104.PubMedCrossRef Thomsen JH, Kjaergaard J, Graff C, Pehrson S, Erlinge D, Wanscher M, et al. Ventricular ectopic burden in comatose survivors of out-of-hospital cardiac arrest treated with targeted temperature management at 33 degrees C and 36 degrees C. Resuscitation. 2016;102:98–104.PubMedCrossRef
52.
go back to reference Polderman KH, Varon J. How low should we go? Hypothermia or strict normothermia after cardiac arrest? Circulation. 2015;131(7):669–75.PubMedCrossRef Polderman KH, Varon J. How low should we go? Hypothermia or strict normothermia after cardiac arrest? Circulation. 2015;131(7):669–75.PubMedCrossRef
Metadata
Title
Targeted temperature management guided by the severity of hyperlactatemia for out-of-hospital cardiac arrest patients: a post hoc analysis of a nationwide, multicenter prospective registry
Authors
Tomoya Okazaki
Toru Hifumi
Kenya Kawakita
Yasuhiro Kuroda
the Japanese Association for Acute Medicine out-of-hospital cardiac arrest (JAAM-OHCA) registry
Publication date
01-12-2019
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2019
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-019-0603-y

Other articles of this Issue 1/2019

Annals of Intensive Care 1/2019 Go to the issue