Skip to main content
Top
Published in: Annals of Intensive Care 1/2018

Open Access 01-12-2018 | Review

Acute kidney injury in major abdominal surgery: incidence, risk factors, pathogenesis and outcomes

Authors: Joana Gameiro, José Agapito Fonseca, Marta Neves, Sofia Jorge, José António Lopes

Published in: Annals of Intensive Care | Issue 1/2018

Login to get access

Abstract

Acute kidney injury (AKI) is a common complication in patients undergoing major abdominal surgery. Various recent studies using modern standardized classifications for AKI reported a variable incidence of AKI after major abdominal surgery ranging from 3 to 35%. Several patient-related, procedure-related factors and postoperative complications were identified as risk factors for AKI in this setting. AKI following major abdominal surgery has been shown to be associated with poor short- and long-term outcomes. Herein, we provide a contemporary and critical review of AKI after major abdominal surgery focusing on its incidence, risk factors, pathogeny and outcomes.
Literature
1.
go back to reference Chertow G, Burdick E, Honour M, Bonventre J, Bates D. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16(11):3365–70.PubMedCrossRef Chertow G, Burdick E, Honour M, Bonventre J, Bates D. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16(11):3365–70.PubMedCrossRef
2.
go back to reference Uchino S, Kellum JA, Bellomo R, et al. Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.PubMedCrossRef Uchino S, Kellum JA, Bellomo R, et al. Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.PubMedCrossRef
3.
go back to reference Barrantes F, Tian J, Vazquez R, Amoateng-Adjepong Y, Manthous CA. Acute kidney injury criteria predict outcomes of critically ill patients. Crit Care Med. 2008;36:1397–403.PubMedCrossRef Barrantes F, Tian J, Vazquez R, Amoateng-Adjepong Y, Manthous CA. Acute kidney injury criteria predict outcomes of critically ill patients. Crit Care Med. 2008;36:1397–403.PubMedCrossRef
4.
go back to reference Cho E, Kim SC, Kim MG, Jo S-K, Cho W-Y, Kim H-K. The incidence and risk factors of acute kidney injury after hepatobiliary surgery: a prospective observational study. BMC Nephrol. 2014;15:169.PubMedPubMedCentralCrossRef Cho E, Kim SC, Kim MG, Jo S-K, Cho W-Y, Kim H-K. The incidence and risk factors of acute kidney injury after hepatobiliary surgery: a prospective observational study. BMC Nephrol. 2014;15:169.PubMedPubMedCentralCrossRef
5.
go back to reference Ryden L, Sartipy U, Evans M, Holzmann MJ. Acute kidney injury after coronary artery bypass grafting and long-term risk of end-stage renal disease. Circulation. 2014;130:2005–11.PubMedCrossRef Ryden L, Sartipy U, Evans M, Holzmann MJ. Acute kidney injury after coronary artery bypass grafting and long-term risk of end-stage renal disease. Circulation. 2014;130:2005–11.PubMedCrossRef
6.
go back to reference Elmistekawy E, McDonald B, Hudson C, et al. Clinical impact of mild acute kidney injury after cardiac surgery. Ann Thorac Surg. 2014;98:815–22.PubMedCrossRef Elmistekawy E, McDonald B, Hudson C, et al. Clinical impact of mild acute kidney injury after cardiac surgery. Ann Thorac Surg. 2014;98:815–22.PubMedCrossRef
7.
8.
go back to reference Teixeira C, Rosa R, Rodrigues N, et al. Acute kidney injury after major abdominal surgery: a retrospective cohort analysis. Crit Care Res Pract. 2014;2014:132175.PubMedPubMedCentral Teixeira C, Rosa R, Rodrigues N, et al. Acute kidney injury after major abdominal surgery: a retrospective cohort analysis. Crit Care Res Pract. 2014;2014:132175.PubMedPubMedCentral
9.
go back to reference Vaught A, Ozrazgat-Baslanti T, Javed A, et al. Acute kidney injury in major gynaecological surgery: an observational study. BJOG. 2015;122:1340–8.PubMedCrossRef Vaught A, Ozrazgat-Baslanti T, Javed A, et al. Acute kidney injury in major gynaecological surgery: an observational study. BJOG. 2015;122:1340–8.PubMedCrossRef
10.
go back to reference Harris DG, Koo G, McCrone MP, et al. Acute kidney injury in critically ill vascular surgery patients is common and associated with increased mortality. Front Surg. 2015;2:8.PubMedPubMedCentralCrossRef Harris DG, Koo G, McCrone MP, et al. Acute kidney injury in critically ill vascular surgery patients is common and associated with increased mortality. Front Surg. 2015;2:8.PubMedPubMedCentralCrossRef
12.
go back to reference Biteker M, Dayan A, Tekkesin AI, et al. Incidence, risk factors, and outcomes of perioperative acute kidney injury in noncardiac and nonvascular surgery. Am J Surg. 2014;207:53–9.PubMedCrossRef Biteker M, Dayan A, Tekkesin AI, et al. Incidence, risk factors, and outcomes of perioperative acute kidney injury in noncardiac and nonvascular surgery. Am J Surg. 2014;207:53–9.PubMedCrossRef
13.
go back to reference Drews JD, Patel HJ, Williams DM, et al. The impact of acute renal failure on early and late outcomes after thoracic aortic endovascular repair. Ann Thorac Surg. 2014;97:2027–33 (discussion 2033).PubMedCrossRef Drews JD, Patel HJ, Williams DM, et al. The impact of acute renal failure on early and late outcomes after thoracic aortic endovascular repair. Ann Thorac Surg. 2014;97:2027–33 (discussion 2033).PubMedCrossRef
14.
go back to reference Kandler K, Jensen ME, Nilsson JC, et al. Acute kidney injury is independently associated with higher mortality after cardiac surgery. J Cardiothorac Vasc Anesth. 2014;28:1448–52.PubMedCrossRef Kandler K, Jensen ME, Nilsson JC, et al. Acute kidney injury is independently associated with higher mortality after cardiac surgery. J Cardiothorac Vasc Anesth. 2014;28:1448–52.PubMedCrossRef
15.
go back to reference Munoz-Garcia AJ, Munoz-Garcia E, Jimenez-Navarro MF, et al. Clinical impact of acute kidney injury on short- and long-term outcomes after transcatheter aortic valve implantation with the CoreValve prosthesis. J Cardiol. 2015;66:46–9.PubMedCrossRef Munoz-Garcia AJ, Munoz-Garcia E, Jimenez-Navarro MF, et al. Clinical impact of acute kidney injury on short- and long-term outcomes after transcatheter aortic valve implantation with the CoreValve prosthesis. J Cardiol. 2015;66:46–9.PubMedCrossRef
16.
go back to reference Zhu JC, Chen SL, Jin GZ, et al. Acute renal injury after thoracic endovascular aortic repair of Stanford type B aortic dissection: incidence, risk factors, and prognosis. J Formos Med Assoc. 2014;113:612–9.PubMedCrossRef Zhu JC, Chen SL, Jin GZ, et al. Acute renal injury after thoracic endovascular aortic repair of Stanford type B aortic dissection: incidence, risk factors, and prognosis. J Formos Med Assoc. 2014;113:612–9.PubMedCrossRef
17.
go back to reference Pickering JW, James MT, Palmer SC. Acute kidney injury and prognosis after cardiopulmonary bypass: a meta-analysis of cohort studies. Am J Kidney Dis. 2015;65:283–93.PubMedCrossRef Pickering JW, James MT, Palmer SC. Acute kidney injury and prognosis after cardiopulmonary bypass: a meta-analysis of cohort studies. Am J Kidney Dis. 2015;65:283–93.PubMedCrossRef
18.
go back to reference Adalbert S, Adelina M, Romulus T, et al. Acute kidney injury in peripheral arterial surgery patients: a cohort study. Ren Fail. 2013;35:1236–9.PubMedCrossRef Adalbert S, Adelina M, Romulus T, et al. Acute kidney injury in peripheral arterial surgery patients: a cohort study. Ren Fail. 2013;35:1236–9.PubMedCrossRef
19.
go back to reference Kheterpal S, Tremper KK, Englesbe MJ, et al. Predictors of post-operative acute renal failure after noncardiac surgery in patients with previously normal renal function. Anesthesiology. 2007;107:892–902.PubMedCrossRef Kheterpal S, Tremper KK, Englesbe MJ, et al. Predictors of post-operative acute renal failure after noncardiac surgery in patients with previously normal renal function. Anesthesiology. 2007;107:892–902.PubMedCrossRef
20.
go back to reference Bihorac A, Yavas S, Subbiah S, et al. Long-term risk of mortality and acute kidney injury during hospitalization after major surgery. Ann Surg. 2009;249:851–8.PubMedCrossRef Bihorac A, Yavas S, Subbiah S, et al. Long-term risk of mortality and acute kidney injury during hospitalization after major surgery. Ann Surg. 2009;249:851–8.PubMedCrossRef
21.
go back to reference Hobson CE, Yavas S, Segal MS, et al. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation. 2009;119:2444–53.PubMedCrossRef Hobson CE, Yavas S, Segal MS, et al. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation. 2009;119:2444–53.PubMedCrossRef
22.
go back to reference Hansen MK, Gammelager H, Mikkelsen MM, et al. Postoperative acute kidney injury and five-year risk of death, myocardial infarction, and stroke among elective cardiac surgical patients: a cohort study. Crit Care. 2013;17:R292.PubMedPubMedCentralCrossRef Hansen MK, Gammelager H, Mikkelsen MM, et al. Postoperative acute kidney injury and five-year risk of death, myocardial infarction, and stroke among elective cardiac surgical patients: a cohort study. Crit Care. 2013;17:R292.PubMedPubMedCentralCrossRef
23.
go back to reference O’Connor M, Kirwan C, Pearse R, Prowle JR. Incidence and associations of acute kidney injury after major abdominal surgery. Intensive Care Med. 2016;42(4):521–30.PubMedCrossRef O’Connor M, Kirwan C, Pearse R, Prowle JR. Incidence and associations of acute kidney injury after major abdominal surgery. Intensive Care Med. 2016;42(4):521–30.PubMedCrossRef
24.
go back to reference Sirvinskas E, Andrejaitiene J, Raliene L, et al. Cardiopulmonary bypass management and acute renal failure: risk factors and prognosis. Perfusion. 2008;23(6):323–7.PubMedCrossRef Sirvinskas E, Andrejaitiene J, Raliene L, et al. Cardiopulmonary bypass management and acute renal failure: risk factors and prognosis. Perfusion. 2008;23(6):323–7.PubMedCrossRef
25.
go back to reference De Santo LS, Romano G, Galdieri N, et al. RIFLE criteria for acute kidney injury in valvular surgery. J Heart Valve Dis. 2010;19(1):139–47 (discussion 148).PubMed De Santo LS, Romano G, Galdieri N, et al. RIFLE criteria for acute kidney injury in valvular surgery. J Heart Valve Dis. 2010;19(1):139–47 (discussion 148).PubMed
26.
go back to reference Svensson L, Crawford E, Hess K, Coselli J, Safi H. Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg. 1993;17(2):357–68 (discussion 368–70).PubMedCrossRef Svensson L, Crawford E, Hess K, Coselli J, Safi H. Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg. 1993;17(2):357–68 (discussion 368–70).PubMedCrossRef
27.
go back to reference Svensson L, Coselli J, Safi H, Hess K, Crawford E. Appraisal of adjuncts to prevent acute renal failure after surgery on the thoracic or thoracoabdominal aorta. J Vasc Surg. 1989;10(3):230–9.PubMedCrossRef Svensson L, Coselli J, Safi H, Hess K, Crawford E. Appraisal of adjuncts to prevent acute renal failure after surgery on the thoracic or thoracoabdominal aorta. J Vasc Surg. 1989;10(3):230–9.PubMedCrossRef
28.
go back to reference Wald R, Waikar S, Liangos O, Pereira B, Chertow G, Jaber B. Acute renal failure after endovascular vs open repair of abdominal aortic aneurysm. J Vasc Surg. 2006;43(3):460–6 (discussion 466).PubMedCrossRef Wald R, Waikar S, Liangos O, Pereira B, Chertow G, Jaber B. Acute renal failure after endovascular vs open repair of abdominal aortic aneurysm. J Vasc Surg. 2006;43(3):460–6 (discussion 466).PubMedCrossRef
29.
go back to reference Tallgren M, Niemi T, Pöyhiä R, et al. Acute renal injury and dysfunction following elective abdominal aortic surgery. Eur J Vasc Endovasc Surg. 2007;33(5):550–5.PubMedCrossRef Tallgren M, Niemi T, Pöyhiä R, et al. Acute renal injury and dysfunction following elective abdominal aortic surgery. Eur J Vasc Endovasc Surg. 2007;33(5):550–5.PubMedCrossRef
30.
go back to reference Arnaoutakis G, Bihorac A, Martin T, et al. RIFLE criteria for acute kidney injury in aortic arch surgery. J Thorac Cardiovasc Surg. 2007;134(6):1554–60 (discussion 1560–1).PubMedCrossRef Arnaoutakis G, Bihorac A, Martin T, et al. RIFLE criteria for acute kidney injury in aortic arch surgery. J Thorac Cardiovasc Surg. 2007;134(6):1554–60 (discussion 1560–1).PubMedCrossRef
31.
go back to reference Mori Y, Sato N, Kobayashi Y, Ochiai R. Acute kidney injury during aortic arch surgery under deep hypothermic circulatory arrest. J Anesth. 2011;25(6):799–804.PubMedCrossRef Mori Y, Sato N, Kobayashi Y, Ochiai R. Acute kidney injury during aortic arch surgery under deep hypothermic circulatory arrest. J Anesth. 2011;25(6):799–804.PubMedCrossRef
32.
go back to reference Causey M, Maykel J, Hatch Q, Miller S, Steele S. Identifying risk factors for renal failure and myocardial infarction following colorectal surgery. J Surg Res. 2011;170(1):32–7.PubMedCrossRef Causey M, Maykel J, Hatch Q, Miller S, Steele S. Identifying risk factors for renal failure and myocardial infarction following colorectal surgery. J Surg Res. 2011;170(1):32–7.PubMedCrossRef
33.
go back to reference Cho A, Lee J, Kwon G, et al. Post-operative acute kidney injury in patients with renal cell carcinoma is a potent risk factor for new-onset chronic kidney disease after radical nephrectomy. Nephrol Dial Transplant. 2011;26(11):3496–501.PubMedCrossRef Cho A, Lee J, Kwon G, et al. Post-operative acute kidney injury in patients with renal cell carcinoma is a potent risk factor for new-onset chronic kidney disease after radical nephrectomy. Nephrol Dial Transplant. 2011;26(11):3496–501.PubMedCrossRef
34.
35.
go back to reference Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.PubMedPubMedCentralCrossRef Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.PubMedPubMedCentralCrossRef
36.
go back to reference Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.PubMedPubMedCentralCrossRef Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.PubMedPubMedCentralCrossRef
37.
go back to reference Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:S1–138.CrossRef Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:S1–138.CrossRef
38.
go back to reference Kellum JA, Lameire N, KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013;17(1):204.PubMedPubMedCentralCrossRef Kellum JA, Lameire N, KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013;17(1):204.PubMedPubMedCentralCrossRef
39.
go back to reference Lameire N, Van Biesen W, Vanholder R. The changing epidemiology of acute renal failure. Nat Clin Nephrol. 2006;2:364–77.CrossRef Lameire N, Van Biesen W, Vanholder R. The changing epidemiology of acute renal failure. Nat Clin Nephrol. 2006;2:364–77.CrossRef
40.
go back to reference Brown J, Rezaee M, Marshall E, Matheny M. Hospital mortality in the United States following acute kidney injury. Biomed Res Int. 2016;2016:4278579.PubMedPubMedCentral Brown J, Rezaee M, Marshall E, Matheny M. Hospital mortality in the United States following acute kidney injury. Biomed Res Int. 2016;2016:4278579.PubMedPubMedCentral
41.
go back to reference Ympa YP, Sakr Y, Reinhart K, Vincent JL. Has mortality from acute renal failure decreased? A systematic review of the literature. Am J Med. 2005;118:827–32.PubMedCrossRef Ympa YP, Sakr Y, Reinhart K, Vincent JL. Has mortality from acute renal failure decreased? A systematic review of the literature. Am J Med. 2005;118:827–32.PubMedCrossRef
42.
go back to reference Liaño F, Junco E, Pascual J, Madero R, Verde E. The spectrum of acute renal failure in the intensive care unit compared with that seen in other settings. The Madrid Acute Renal Failure Study Group. Kidney Int Suppl. 1998;66:S16–24.PubMed Liaño F, Junco E, Pascual J, Madero R, Verde E. The spectrum of acute renal failure in the intensive care unit compared with that seen in other settings. The Madrid Acute Renal Failure Study Group. Kidney Int Suppl. 1998;66:S16–24.PubMed
43.
go back to reference Bellomo R. The epidemiology of acute renal failure: 1975 versus 2005. Curr Opin Crit Care. 2006;12:557–60.PubMedCrossRef Bellomo R. The epidemiology of acute renal failure: 1975 versus 2005. Curr Opin Crit Care. 2006;12:557–60.PubMedCrossRef
44.
go back to reference Thakar CV, Christianson A, Freyberg R, Almenoff P, Render ML. Incidence and outcomes of acute kidney injury in intensive care units: a Veterans Administration study. Crit Care Med. 2009;37(9):2552–8.PubMedCrossRef Thakar CV, Christianson A, Freyberg R, Almenoff P, Render ML. Incidence and outcomes of acute kidney injury in intensive care units: a Veterans Administration study. Crit Care Med. 2009;37(9):2552–8.PubMedCrossRef
45.
go back to reference Case J, Khan S, Khalid R, Khan A. Epidemiology of acute kidney injury in the intensive care unit. Crit Care Res Pract. 2013;2013:479730.PubMedPubMedCentral Case J, Khan S, Khalid R, Khan A. Epidemiology of acute kidney injury in the intensive care unit. Crit Care Res Pract. 2013;2013:479730.PubMedPubMedCentral
46.
go back to reference Hoste EA, Clermont G, Kersten A, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10(3):R73.PubMedPubMedCentralCrossRef Hoste EA, Clermont G, Kersten A, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10(3):R73.PubMedPubMedCentralCrossRef
48.
go back to reference Grams ME, Sang Y, Coresh J, et al. Acute kidney injury after major surgery: a retrospective analysis of veteran’s health administration data. Am J Kidney Dis. 2016;67(6):872–80.PubMedCrossRef Grams ME, Sang Y, Coresh J, et al. Acute kidney injury after major surgery: a retrospective analysis of veteran’s health administration data. Am J Kidney Dis. 2016;67(6):872–80.PubMedCrossRef
49.
50.
go back to reference Macedo E, Malhotra R, Bouchard J, Wynn S, Mehta R. Oliguria is an early predictor of higher mortality in critically ill patients. Kidney Int. 2011;80(7):760–7.PubMedCrossRef Macedo E, Malhotra R, Bouchard J, Wynn S, Mehta R. Oliguria is an early predictor of higher mortality in critically ill patients. Kidney Int. 2011;80(7):760–7.PubMedCrossRef
51.
go back to reference Alpert RA, Roizen MF, Hamilton WK, et al. Intraoperative urinary output does not predict postoperative renal function in patients undergoing abdominal aortic revascularization. Surgery. 1984;95:707–11.PubMed Alpert RA, Roizen MF, Hamilton WK, et al. Intraoperative urinary output does not predict postoperative renal function in patients undergoing abdominal aortic revascularization. Surgery. 1984;95:707–11.PubMed
53.
54.
go back to reference Koyner JL, Parikh CR. Clinical utility of biomarkers of AKI in cardiac surgery and critical illness. Clin J Am Soc Nephrol. 2013;8(6):1034–42.PubMedCrossRef Koyner JL, Parikh CR. Clinical utility of biomarkers of AKI in cardiac surgery and critical illness. Clin J Am Soc Nephrol. 2013;8(6):1034–42.PubMedCrossRef
55.
go back to reference Han WK, Wagener G, Zhu Y, Wang S, Lee HT. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4(5):873–82.PubMedPubMedCentralCrossRef Han WK, Wagener G, Zhu Y, Wang S, Lee HT. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4(5):873–82.PubMedPubMedCentralCrossRef
56.
go back to reference Meersch M, Schmidt C, Van Aken H, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS ONE. 2014;9(3):e93460.PubMedPubMedCentralCrossRef Meersch M, Schmidt C, Van Aken H, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS ONE. 2014;9(3):e93460.PubMedPubMedCentralCrossRef
57.
go back to reference Calvert S, Shaw A. Perioperative acute kidney injury. Perioper Med. 2012;4(1):6.CrossRef Calvert S, Shaw A. Perioperative acute kidney injury. Perioper Med. 2012;4(1):6.CrossRef
59.
go back to reference Armstrong T, Welsh FK, Wells J, Chandrakumaran K, John TG, Rees M. The impact of pre-operative serum creatinine on short-term outcomes after liver resection. HPB (Oxford). 2009;11:622–8.CrossRef Armstrong T, Welsh FK, Wells J, Chandrakumaran K, John TG, Rees M. The impact of pre-operative serum creatinine on short-term outcomes after liver resection. HPB (Oxford). 2009;11:622–8.CrossRef
60.
go back to reference Correa-Gallego C, Berman A, Denis SC, et al. Renal function after low central venous pressure-assisted liver resection: assessment of 2116 cases. HPB (Oxford). 2015;17:258–64.CrossRef Correa-Gallego C, Berman A, Denis SC, et al. Renal function after low central venous pressure-assisted liver resection: assessment of 2116 cases. HPB (Oxford). 2015;17:258–64.CrossRef
61.
go back to reference Causey MW, Maykel JA, Hatch Q, Miller S, Steele SR. Identifying risk factors for renal failure and myocardial infarction following colorectal surgery. J Surg Res. 2011;170:32–7.PubMedCrossRef Causey MW, Maykel JA, Hatch Q, Miller S, Steele SR. Identifying risk factors for renal failure and myocardial infarction following colorectal surgery. J Surg Res. 2011;170:32–7.PubMedCrossRef
62.
go back to reference Lee EH, Kim HR, Baek SH, et al. Risk factors of postoperative acute kidney injury in patients undergoing esophageal cancer surgery. J Cardiothorac Vasc Anesth. 2014;28:948–54.CrossRef Lee EH, Kim HR, Baek SH, et al. Risk factors of postoperative acute kidney injury in patients undergoing esophageal cancer surgery. J Cardiothorac Vasc Anesth. 2014;28:948–54.CrossRef
64.
go back to reference Slankamenac K, Breitenstein S, Held U, Beck-Schimmer B, Puhan MA, Clavien PA. Development and validation of a prediction score for postoperative acute renal failure following liver resection. Ann Surg. 2009;250:720–8.PubMedCrossRef Slankamenac K, Breitenstein S, Held U, Beck-Schimmer B, Puhan MA, Clavien PA. Development and validation of a prediction score for postoperative acute renal failure following liver resection. Ann Surg. 2009;250:720–8.PubMedCrossRef
65.
go back to reference Tomozawa A, Ishikawa S, Shiota N, Cholvisudhi P, Makita K. Perioperative risk factors for acute kidney injury after liver resection surgery: an historical cohort study. Can J Anaesth. 2015;62:753–61.PubMedCrossRef Tomozawa A, Ishikawa S, Shiota N, Cholvisudhi P, Makita K. Perioperative risk factors for acute kidney injury after liver resection surgery: an historical cohort study. Can J Anaesth. 2015;62:753–61.PubMedCrossRef
66.
go back to reference Ford MK, Beattie SW, Wijeysundera DN. systematic review: prediction of perioperative cardiac complications and mortality by the revised cardiac risk index. Ann Intern Med. 2010;152:26–35.PubMedCrossRef Ford MK, Beattie SW, Wijeysundera DN. systematic review: prediction of perioperative cardiac complications and mortality by the revised cardiac risk index. Ann Intern Med. 2010;152:26–35.PubMedCrossRef
67.
go back to reference Kambakamba P, Slankamenac K, Tschuor C, et al. Epidural analgesia and perioperative kidney function after major liver resection. Br J Surg. 2015;102:805–12.PubMedCrossRef Kambakamba P, Slankamenac K, Tschuor C, et al. Epidural analgesia and perioperative kidney function after major liver resection. Br J Surg. 2015;102:805–12.PubMedCrossRef
68.
go back to reference Kim CS, Oak CY, Kim HY, et al. Incidence, predictive factors, and clinical outcomes of acute kidney injury after gastric surgery for gastric cancer. PLoS ONE. 2013;8:e82289.PubMedPubMedCentralCrossRef Kim CS, Oak CY, Kim HY, et al. Incidence, predictive factors, and clinical outcomes of acute kidney injury after gastric surgery for gastric cancer. PLoS ONE. 2013;8:e82289.PubMedPubMedCentralCrossRef
69.
go back to reference Sun LY, Wijeysundera DN, Tait GA, Beattie WS. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology. 2015;123:515–23.PubMedCrossRef Sun LY, Wijeysundera DN, Tait GA, Beattie WS. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology. 2015;123:515–23.PubMedCrossRef
70.
go back to reference de Haan JE, Hoorn EJ, de Geus HRH. Acute kidney injury after liver transplantation: recent insights and future perspectives. Best Pract Res Clin Gastroenterol. 2017;31(2):161–9.PubMedCrossRef de Haan JE, Hoorn EJ, de Geus HRH. Acute kidney injury after liver transplantation: recent insights and future perspectives. Best Pract Res Clin Gastroenterol. 2017;31(2):161–9.PubMedCrossRef
71.
go back to reference Chen J, Singhapricha T, Hu K-Q, et al. Postliver transplant acute renal injury and failure by the RIFLE criteria in patients with normal pretransplant serum creatinine concentrations: a matched study. Transplantation. 2011;91:348–53.PubMedCrossRef Chen J, Singhapricha T, Hu K-Q, et al. Postliver transplant acute renal injury and failure by the RIFLE criteria in patients with normal pretransplant serum creatinine concentrations: a matched study. Transplantation. 2011;91:348–53.PubMedCrossRef
72.
go back to reference Thakar CV, Kharat V, Blanck S, Leonard AC. Acute kidney injury after gastric bypass surgery. Clin J Am Soc Nephrol. 2007;2(3):426–30.PubMedCrossRef Thakar CV, Kharat V, Blanck S, Leonard AC. Acute kidney injury after gastric bypass surgery. Clin J Am Soc Nephrol. 2007;2(3):426–30.PubMedCrossRef
73.
go back to reference Weingarten TN, Gurrieri C, McCaffrey JM, et al. Acute kidney injury following bariatric surgery. Obes Surg. 2013;23(1):64–70.PubMedCrossRef Weingarten TN, Gurrieri C, McCaffrey JM, et al. Acute kidney injury following bariatric surgery. Obes Surg. 2013;23(1):64–70.PubMedCrossRef
74.
go back to reference Almac E, Ince C. The impact of storage on red cell function in blood transfusion. Best Pract Res Clin Anaesthesiol. 2007;21(2):195–208.PubMedCrossRef Almac E, Ince C. The impact of storage on red cell function in blood transfusion. Best Pract Res Clin Anaesthesiol. 2007;21(2):195–208.PubMedCrossRef
75.
go back to reference Koch C, Li L, Sessler D, et al. Duration of red-cell storage and complications after cardiac surgery. N Engl J Med. 2008;358(12):1229–39.PubMedCrossRef Koch C, Li L, Sessler D, et al. Duration of red-cell storage and complications after cardiac surgery. N Engl J Med. 2008;358(12):1229–39.PubMedCrossRef
76.
go back to reference Karkouti K, Wijeysundera D, Yau TM, et al. Acute kidney injury after cardiac surgery. Focus on modifiable risk factors. Circulation. 2009;119(4):495–502.PubMedCrossRef Karkouti K, Wijeysundera D, Yau TM, et al. Acute kidney injury after cardiac surgery. Focus on modifiable risk factors. Circulation. 2009;119(4):495–502.PubMedCrossRef
77.
go back to reference Ricci Z, Romagnoli S, Ronco C. Perioperative intravascular volume replacement and kidney insufficiency. Best Pract Res Clin Anaesthesiol. 2012;26(4):463–74.PubMedCrossRef Ricci Z, Romagnoli S, Ronco C. Perioperative intravascular volume replacement and kidney insufficiency. Best Pract Res Clin Anaesthesiol. 2012;26(4):463–74.PubMedCrossRef
78.
go back to reference Myburgh JA, Finfer S, Bellomo R, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–11.PubMedCrossRef Myburgh JA, Finfer S, Bellomo R, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–11.PubMedCrossRef
79.
go back to reference Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;2:CD000567. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;2:CD000567.
80.
go back to reference Raiman M, Mitchell C, Biccard B, Rodseth R. Comparison of hydroxyethyl starch colloids with crystalloids for surgical patients: a systematic review and meta-analysis. Eur J Anaesthesiol. 2016;33(1):42–8.PubMedCrossRef Raiman M, Mitchell C, Biccard B, Rodseth R. Comparison of hydroxyethyl starch colloids with crystalloids for surgical patients: a systematic review and meta-analysis. Eur J Anaesthesiol. 2016;33(1):42–8.PubMedCrossRef
81.
go back to reference Zazzeron L, Gattinoni L, Caironi P, et al. Role of albumin, starches and gelatins versus crystalloids in volume resuscitation of critically ill patients. Curr Opin Crit Care. 2016;22(5):428–36.PubMedCrossRef Zazzeron L, Gattinoni L, Caironi P, et al. Role of albumin, starches and gelatins versus crystalloids in volume resuscitation of critically ill patients. Curr Opin Crit Care. 2016;22(5):428–36.PubMedCrossRef
82.
go back to reference Shaw AD, Kellum JA. The risk of AKI in patients treated with intravenous solutions containing hydroxyethyl starch. Clin J Am Soc Nephrol. 2013;8(3):497–503.PubMedCrossRef Shaw AD, Kellum JA. The risk of AKI in patients treated with intravenous solutions containing hydroxyethyl starch. Clin J Am Soc Nephrol. 2013;8(3):497–503.PubMedCrossRef
83.
go back to reference Kim SK, Choi SS, Sim JH, et al. Effect of hydroxyethyl starch on acute kidney injury after living donor hepatectomy. Transplant Proc. 2016;48(1):102–6.PubMedCrossRef Kim SK, Choi SS, Sim JH, et al. Effect of hydroxyethyl starch on acute kidney injury after living donor hepatectomy. Transplant Proc. 2016;48(1):102–6.PubMedCrossRef
84.
go back to reference Vives M, Callejas R, Duque P, et al. Modern hydroxyethyl starch and acute kidney injury after cardiac surgery: a prospective multicentre cohort. Br J Anaesth. 2016;117(4):458–63.PubMedCrossRef Vives M, Callejas R, Duque P, et al. Modern hydroxyethyl starch and acute kidney injury after cardiac surgery: a prospective multicentre cohort. Br J Anaesth. 2016;117(4):458–63.PubMedCrossRef
85.
go back to reference Umegaki T, Uba T, Sumi C, et al. Impact of hydroxyethyl starch 70/0.5 on acute kidney injury after gastroenterological surgery. Korean J Anesthesiol. 2016;69(5):460–7.PubMedPubMedCentralCrossRef Umegaki T, Uba T, Sumi C, et al. Impact of hydroxyethyl starch 70/0.5 on acute kidney injury after gastroenterological surgery. Korean J Anesthesiol. 2016;69(5):460–7.PubMedPubMedCentralCrossRef
86.
87.
go back to reference Carmichael P, Carmichael AR. Acute renal failure in the surgical setting. ANZ J Surg. 2003;73:144–53.PubMedCrossRef Carmichael P, Carmichael AR. Acute renal failure in the surgical setting. ANZ J Surg. 2003;73:144–53.PubMedCrossRef
88.
go back to reference Levy EM, Viscoli CM, Horwitz RI. The effect of acute renal failure on mortality. A cohort analysis. JAMA. 1996;275:1489–94.PubMedCrossRef Levy EM, Viscoli CM, Horwitz RI. The effect of acute renal failure on mortality. A cohort analysis. JAMA. 1996;275:1489–94.PubMedCrossRef
89.
90.
91.
go back to reference Welborn MB, Oldenburg HS, Hess PJ, et al. The relationship between visceral ischemia, proinflammatory cytokines, and organ injury in patients undergoing thoracoabdominal aortic aneurysm repair. Crit Care Med. 2000;28:3191–7.PubMedCrossRef Welborn MB, Oldenburg HS, Hess PJ, et al. The relationship between visceral ischemia, proinflammatory cytokines, and organ injury in patients undergoing thoracoabdominal aortic aneurysm repair. Crit Care Med. 2000;28:3191–7.PubMedCrossRef
92.
go back to reference Gobe G, Willgoss D, Hogg N, Schoch E, Endre Z. Cell survival or death in renal tubular epithelium after ischemia- reperfusion injury. Kidney Int. 1999;56:1299–304.PubMedCrossRef Gobe G, Willgoss D, Hogg N, Schoch E, Endre Z. Cell survival or death in renal tubular epithelium after ischemia- reperfusion injury. Kidney Int. 1999;56:1299–304.PubMedCrossRef
93.
go back to reference Neves JB, Jorge S, Lopes JA. Acute kidney injury: epidemiology, diagnosis, prognosis, and future directions. EMJ Nephrol. 2015;3(1):90–6. Neves JB, Jorge S, Lopes JA. Acute kidney injury: epidemiology, diagnosis, prognosis, and future directions. EMJ Nephrol. 2015;3(1):90–6.
94.
go back to reference Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16:3365–70.PubMedCrossRef Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16:3365–70.PubMedCrossRef
95.
go back to reference Lopes JA, Fernandes P, Jorge S, et al. Acute kidney injury in intensive care unit patients: a comparison between the RIFLE and the Acute Kidney Injury Network classifications. Crit Care. 2008;12(R110):16–31. Lopes JA, Fernandes P, Jorge S, et al. Acute kidney injury in intensive care unit patients: a comparison between the RIFLE and the Acute Kidney Injury Network classifications. Crit Care. 2008;12(R110):16–31.
96.
go back to reference Ostermann M, Chang RW. Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med. 2007;35:1837–43.PubMedCrossRef Ostermann M, Chang RW. Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med. 2007;35:1837–43.PubMedCrossRef
97.
go back to reference Lai CF, Wu VC, Huang TM, et al. Kidney function decline after a non-dialysis-requiring acute kidney injury is associated with higher long-term mortality in critically ill survivors. Crit Care. 2012;16:R123.PubMedPubMedCentralCrossRef Lai CF, Wu VC, Huang TM, et al. Kidney function decline after a non-dialysis-requiring acute kidney injury is associated with higher long-term mortality in critically ill survivors. Crit Care. 2012;16:R123.PubMedPubMedCentralCrossRef
98.
go back to reference Coca SG, Peixoto AJ, Garg AX, Krumholz HM, Parikh CR. The prognostic importance of a small acute decrement in kidney function in hospitalized patients: a systematic review and meta-analysis. Am J Kidney Dis. 2007;50(5):712–20.PubMedCrossRef Coca SG, Peixoto AJ, Garg AX, Krumholz HM, Parikh CR. The prognostic importance of a small acute decrement in kidney function in hospitalized patients: a systematic review and meta-analysis. Am J Kidney Dis. 2007;50(5):712–20.PubMedCrossRef
99.
go back to reference Li X, Hassoun HT, Santora R, Rabb H. Organ crosstalk: the role of the kidney. Curr Opin Crit Care. 2009;15:481–7.PubMedCrossRef Li X, Hassoun HT, Santora R, Rabb H. Organ crosstalk: the role of the kidney. Curr Opin Crit Care. 2009;15:481–7.PubMedCrossRef
100.
go back to reference Coca SG, Yusuf B, Shlipak MG, Garg AX, Parikh CR. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;53:961–73.PubMedPubMedCentralCrossRef Coca SG, Yusuf B, Shlipak MG, Garg AX, Parikh CR. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;53:961–73.PubMedPubMedCentralCrossRef
101.
go back to reference Linder A, Fjell C, Levin A, Walley KR, Russell JA, Boyd JH. Small acute increases in serum creatinine are associated with decreased long-term survival in the critically ill. Am J Respir Crit Care Med. 2014;189(9):1075–81.PubMedCrossRef Linder A, Fjell C, Levin A, Walley KR, Russell JA, Boyd JH. Small acute increases in serum creatinine are associated with decreased long-term survival in the critically ill. Am J Respir Crit Care Med. 2014;189(9):1075–81.PubMedCrossRef
102.
go back to reference Ferenbach DA, Bonventre JV. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol. 2015;11(5):264–76.PubMedPubMedCentralCrossRef Ferenbach DA, Bonventre JV. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol. 2015;11(5):264–76.PubMedPubMedCentralCrossRef
103.
go back to reference Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81:442–8.PubMedCrossRef Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81:442–8.PubMedCrossRef
104.
go back to reference Spurgeon-Pechman KR, Donohoe DL, Mattson DL, Lund H, James L, Basile DP. Recovery from acute renal failure predisposes hypertension and secondary renal disease in response to elevated sodium. Am J Physiol Renal Physiol. 2007;293:F269–78.PubMedCrossRef Spurgeon-Pechman KR, Donohoe DL, Mattson DL, Lund H, James L, Basile DP. Recovery from acute renal failure predisposes hypertension and secondary renal disease in response to elevated sodium. Am J Physiol Renal Physiol. 2007;293:F269–78.PubMedCrossRef
105.
go back to reference Basile DP. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int. 2007;72:151–6.PubMedCrossRef Basile DP. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int. 2007;72:151–6.PubMedCrossRef
106.
go back to reference Sarafidis PA, Bakris GL. Microalbuminuria and chronic kidney disease as risk factors for cardiovascular disease. Nephrol Dial Transplant. 2006;21:2366–74.PubMedCrossRef Sarafidis PA, Bakris GL. Microalbuminuria and chronic kidney disease as risk factors for cardiovascular disease. Nephrol Dial Transplant. 2006;21:2366–74.PubMedCrossRef
107.
go back to reference Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.PubMedCrossRef Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.PubMedCrossRef
108.
go back to reference Gameiro J, Neves JB, Rodrigues N, et al. Acute kidney injury, long-term renal function and mortality in patients undergoing major abdominal surgery: a cohort analysis. Clin Kidney J. 2016;9(2):192–200.PubMedPubMedCentralCrossRef Gameiro J, Neves JB, Rodrigues N, et al. Acute kidney injury, long-term renal function and mortality in patients undergoing major abdominal surgery: a cohort analysis. Clin Kidney J. 2016;9(2):192–200.PubMedPubMedCentralCrossRef
Metadata
Title
Acute kidney injury in major abdominal surgery: incidence, risk factors, pathogenesis and outcomes
Authors
Joana Gameiro
José Agapito Fonseca
Marta Neves
Sofia Jorge
José António Lopes
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2018
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-018-0369-7

Other articles of this Issue 1/2018

Annals of Intensive Care 1/2018 Go to the issue