Skip to main content
Top
Published in: Annals of Intensive Care 1/2017

Open Access 01-12-2017 | Research

Acute hyperventilation increases the central venous-to-arterial PCO2 difference in stable septic shock patients

Authors: Jihad Mallat, Usman Mohammad, Malcolm Lemyze, Mehdi Meddour, Marie Jonard, Florent Pepy, Gaelle Gasan, Stephanie Barrailler, Johanna Temime, Nicolas Vangrunderbeeck, Laurent Tronchon, Didier Thevenin

Published in: Annals of Intensive Care | Issue 1/2017

Login to get access

Abstract

Background

To evaluate the effects of acute hyperventilation on the central venous-to-arterial carbon dioxide tension difference (∆PCO2) in hemodynamically stable septic shock patients.

Methods

Eighteen mechanically ventilated septic shock patients were prospectively included in the study. We measured cardiac index (CI), ∆PCO2, oxygen consumption (VO2), central venous oxygen saturation (ScvO2), and blood gas parameters, before and 30 min after an increase in alveolar ventilation (increased respiratory rate by 10 breaths/min).

Results

Arterial pH increased significantly (from 7.35 ± 0.07 to 7.42 ± 0.09, p < 0.001) and arterial carbon dioxide tension decreased significantly (from 44.5 [41–48] to 34 [30–38] mmHg, p < 0.001) when respiratory rate was increased. A statistically significant increase in VO2 (from 93 [76–105] to 112 [95–134] mL/min/m2, p = 0.002) was observed in parallel with the increase in alveolar ventilation. While CI remained unchanged, acute hyperventilation led to a significant increase in ∆PCO2 (from 4.7 ± 1.0 to 7.0 ± 2.6 mmHg, p < 0.001) and a significant decrease in ScvO2 (from 73 ± 6 to 67 ± 8%, p < 0.001). A good correlation was found between changes in arterial pH and changes in VO2 (r = 0.67, p = 0.002). Interestingly, we found a strong association between the increase in VO2 and the increase in ∆PCO2 (r = 0.70, p = 0.001).

Conclusions

Acute hyperventilation provoked a significant increase in ∆PCO2, which was the result of a significant increase in VO2 induced by hyperventilation. The clinician should be aware of the effects of acute elevation of alveolar ventilation on ∆PCO2.
Appendix
Available only for authorised users
Literature
2.
go back to reference Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815.CrossRefPubMedPubMedCentral Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815.CrossRefPubMedPubMedCentral
3.
go back to reference Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest. 1992;101:509–15.CrossRefPubMed Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest. 1992;101:509–15.CrossRefPubMed
4.
go back to reference Valleé F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34:2218–25.CrossRefPubMed Valleé F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34:2218–25.CrossRefPubMed
5.
go back to reference Mallat J, Pepy F, Lemyze M, Gasan G, Vangrunderbeeck N, Tronchon L, et al. Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study. Eur J Anaesthesiol. 2014;31(7):371–80.CrossRefPubMed Mallat J, Pepy F, Lemyze M, Gasan G, Vangrunderbeeck N, Tronchon L, et al. Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study. Eur J Anaesthesiol. 2014;31(7):371–80.CrossRefPubMed
6.
go back to reference van Beest PA, Lont MC, Holman ND, Loef B, Kuiper MA, Boerma EC. Central venous–arterial PCO2 difference as a tool in resuscitation of septic patients. Intensive Care Med. 2013;39:1034–9.CrossRefPubMed van Beest PA, Lont MC, Holman ND, Loef B, Kuiper MA, Boerma EC. Central venous–arterial PCO2 difference as a tool in resuscitation of septic patients. Intensive Care Med. 2013;39:1034–9.CrossRefPubMed
7.
8.
go back to reference Ospina-Tascón GA, Bautista-Rincón DF, Umaña M, Tafur JD, Gutiérrez A, García AF, et al. Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit Care. 2013;17:R294.CrossRefPubMedPubMedCentral Ospina-Tascón GA, Bautista-Rincón DF, Umaña M, Tafur JD, Gutiérrez A, García AF, et al. Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit Care. 2013;17:R294.CrossRefPubMedPubMedCentral
9.
go back to reference Ospina-Tascón GA, Umaña M, Bermúdez WF, Bautista-Rincón DF, Valencia JD, Madriñán HJ, et al. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med. 2016;42:211–21.CrossRefPubMed Ospina-Tascón GA, Umaña M, Bermúdez WF, Bautista-Rincón DF, Valencia JD, Madriñán HJ, et al. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med. 2016;42:211–21.CrossRefPubMed
10.
go back to reference Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol. 2000;89:1317–21.PubMed Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol. 2000;89:1317–21.PubMed
11.
go back to reference Groeneveld AB. Interpreting the venous–arterial PCO2 difference. Crit Care Med. 1998;26:979–80.CrossRefPubMed Groeneveld AB. Interpreting the venous–arterial PCO2 difference. Crit Care Med. 1998;26:979–80.CrossRefPubMed
12.
go back to reference Lamia B, Monnet X, Teboul JL. Meaning of arterio–venous PCO2 difference in circulatory shock. Minerva Anestesiol. 2006;72:597–604.PubMed Lamia B, Monnet X, Teboul JL. Meaning of arterio–venous PCO2 difference in circulatory shock. Minerva Anestesiol. 2006;72:597–604.PubMed
13.
go back to reference Bernardin G, Lucas P, Hyvernat H, Deloffre P, Mattéi M. Influence of alveolar ventilation changes on calculated gastric intramucosal pH and gastric-arterial PCO2 difference. Intensive Care Med. 1999;25:269–73.CrossRefPubMed Bernardin G, Lucas P, Hyvernat H, Deloffre P, Mattéi M. Influence of alveolar ventilation changes on calculated gastric intramucosal pH and gastric-arterial PCO2 difference. Intensive Care Med. 1999;25:269–73.CrossRefPubMed
14.
go back to reference Mas A, Saura P, Joseph D, Blanch L, Baigorri F, Artigas A, et al. Effect of acute moderate changes in PaCO2 on global hemodynamics and gastric perfusion. Crit Care Med. 2000;28:360–5.CrossRefPubMed Mas A, Saura P, Joseph D, Blanch L, Baigorri F, Artigas A, et al. Effect of acute moderate changes in PaCO2 on global hemodynamics and gastric perfusion. Crit Care Med. 2000;28:360–5.CrossRefPubMed
15.
go back to reference Pernat A, Weil MH, Tang W, Yamaguchi H, Pernat AM, Sun S, et al. Effects of hyper- and hypoventilation on gastric and sublingual PCO2. J Appl Physiol. 1999;87:933–7.PubMed Pernat A, Weil MH, Tang W, Yamaguchi H, Pernat AM, Sun S, et al. Effects of hyper- and hypoventilation on gastric and sublingual PCO2. J Appl Physiol. 1999;87:933–7.PubMed
16.
go back to reference Guzman JA, Kruse JA. Gut mucosal–arterial pCO2 gradient as an indicator of splanchnic perfusion during systemic hypo- and hypercapnia. Crit Care Med. 1999;27:2760–5.CrossRefPubMed Guzman JA, Kruse JA. Gut mucosal–arterial pCO2 gradient as an indicator of splanchnic perfusion during systemic hypo- and hypercapnia. Crit Care Med. 1999;27:2760–5.CrossRefPubMed
17.
go back to reference Khambatta HJ, Sullivan SF. Effects of respiratory alkalosis on oxygen consumption and oxygenation. Anesthesiology. 1973;38:53–8.CrossRefPubMed Khambatta HJ, Sullivan SF. Effects of respiratory alkalosis on oxygen consumption and oxygenation. Anesthesiology. 1973;38:53–8.CrossRefPubMed
18.
go back to reference Cain SM. Increased oxygen uptake with passive hyperventilation of dogs. J Appl Physiol. 1970;28:4–7.PubMed Cain SM. Increased oxygen uptake with passive hyperventilation of dogs. J Appl Physiol. 1970;28:4–7.PubMed
19.
go back to reference Umeda A, Kawasaki K, Abe T, Watanabe M, Ishizaka A, Okada Y. Hyperventilation and finger exercise increase venous–arterial PCO2 and pH differences. Am J Emerg Med. 2008;26:975–80.CrossRefPubMed Umeda A, Kawasaki K, Abe T, Watanabe M, Ishizaka A, Okada Y. Hyperventilation and finger exercise increase venous–arterial PCO2 and pH differences. Am J Emerg Med. 2008;26:975–80.CrossRefPubMed
20.
go back to reference Morel J, Gergelé L, Dominé A, Molliex S, Perrot JL, Labeille B, et al. The venous–arterial difference in CO2 should be interpreted with caution in case of respiratory alkalosis in healthy volunteers. J Clin Monit Comput. 2016. doi:10.1007/s10877-016-9897-6. Morel J, Gergelé L, Dominé A, Molliex S, Perrot JL, Labeille B, et al. The venous–arterial difference in CO2 should be interpreted with caution in case of respiratory alkalosis in healthy volunteers. J Clin Monit Comput. 2016. doi:10.​1007/​s10877-016-9897-6.
21.
go back to reference Morel J, Gergele L, Verveche D, Costes F, Auboyer C, Molliex S. Do fluctuations of PaCO2 impact on the venous–arterial carbon dioxide gradient? Crit Care. 2011;15:456.CrossRefPubMedPubMedCentral Morel J, Gergele L, Verveche D, Costes F, Auboyer C, Molliex S. Do fluctuations of PaCO2 impact on the venous–arterial carbon dioxide gradient? Crit Care. 2011;15:456.CrossRefPubMedPubMedCentral
22.
go back to reference Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definition conference. Crit Care Med. 2003;31:1250–6.CrossRefPubMed Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definition conference. Crit Care Med. 2003;31:1250–6.CrossRefPubMed
23.
go back to reference Mallat J, Lazkani A, Lemyze M, Pepy F, Meddour M, Gasan G, et al. Repeatability of blood gas parameters, PCO2 gap, and PCO2 gap to arterial-to-venous oxygen content difference in critically ill adult patients. Medicine. 2015;943:e415.CrossRef Mallat J, Lazkani A, Lemyze M, Pepy F, Meddour M, Gasan G, et al. Repeatability of blood gas parameters, PCO2 gap, and PCO2 gap to arterial-to-venous oxygen content difference in critically ill adult patients. Medicine. 2015;943:e415.CrossRef
24.
go back to reference Rackow EC, Astiz ME, Mecher CE, Weil MH. Increased venous–arterial carbon dioxide tension difference during severe sepsis in rats. Crit Care Med. 1994;22:121–5.CrossRefPubMed Rackow EC, Astiz ME, Mecher CE, Weil MH. Increased venous–arterial carbon dioxide tension difference during severe sepsis in rats. Crit Care Med. 1994;22:121–5.CrossRefPubMed
25.
go back to reference Benjamin E. Venous hypercarbia: a nonspecific marker of hypoperfusion. Crit Care Med. 1994;22:9–10.CrossRefPubMed Benjamin E. Venous hypercarbia: a nonspecific marker of hypoperfusion. Crit Care Med. 1994;22:9–10.CrossRefPubMed
26.
go back to reference Karetzky MS, Cain SM. Effect of carbon dioxide on oxygen uptake during hyperventilation in normal man. J Appl Physiol. 1970;28:8–12.PubMed Karetzky MS, Cain SM. Effect of carbon dioxide on oxygen uptake during hyperventilation in normal man. J Appl Physiol. 1970;28:8–12.PubMed
27.
go back to reference Slater RM, Symreng T, Ping ST, Starr J, Tatman D. The effect of respiratory alkalosis on oxygen consumption in anesthetized patients. J Clin Anesth. 1992;4:462–7.CrossRefPubMed Slater RM, Symreng T, Ping ST, Starr J, Tatman D. The effect of respiratory alkalosis on oxygen consumption in anesthetized patients. J Clin Anesth. 1992;4:462–7.CrossRefPubMed
28.
go back to reference Theye RA, Gronert GA, Heffron JJ. Oxygen uptake of canine whole body and hind limb with hypocapnic alkalosis. Anesthesiology. 1977;47:416–22.CrossRefPubMed Theye RA, Gronert GA, Heffron JJ. Oxygen uptake of canine whole body and hind limb with hypocapnic alkalosis. Anesthesiology. 1977;47:416–22.CrossRefPubMed
29.
go back to reference Dobson GP, Yamamoto E, Hochachka PW. Phosphofructokinase control in muscle: nature and reversal of pH-dependent ATP inhibition. Am J Physiol. 1986;250:71–6. Dobson GP, Yamamoto E, Hochachka PW. Phosphofructokinase control in muscle: nature and reversal of pH-dependent ATP inhibition. Am J Physiol. 1986;250:71–6.
30.
go back to reference Davies SF, Iber C, Keene SA, McArthur CD, Path MJ. Effect of respiratory alkalosis during exercise on blood lactate. J Appl Physiol. 1986;61:948–52.PubMed Davies SF, Iber C, Keene SA, McArthur CD, Path MJ. Effect of respiratory alkalosis during exercise on blood lactate. J Appl Physiol. 1986;61:948–52.PubMed
31.
go back to reference Plum F, Posner JB. Blood and cerebrospinal fluid lactate during hyperventilation. Am J Physiol. 1967;212:864–70.PubMed Plum F, Posner JB. Blood and cerebrospinal fluid lactate during hyperventilation. Am J Physiol. 1967;212:864–70.PubMed
32.
go back to reference Richardson DW, Kontos HA, Raper AJ, et al. Systemic circulatory responses to hypocapnia in man. Am J Physiol. 1972;223:1308–12.PubMed Richardson DW, Kontos HA, Raper AJ, et al. Systemic circulatory responses to hypocapnia in man. Am J Physiol. 1972;223:1308–12.PubMed
33.
go back to reference Winsö O, Biber B, Martner J. Effects of hyperventilation and hypoventilation on stress-induced intestinal vasoconstriction. Acta Anaesthesiol Scand. 1985;29:726–32.CrossRefPubMed Winsö O, Biber B, Martner J. Effects of hyperventilation and hypoventilation on stress-induced intestinal vasoconstriction. Acta Anaesthesiol Scand. 1985;29:726–32.CrossRefPubMed
34.
go back to reference Jakob SM, Groeneveld AB, Teboul JL. Venous–arterial CO2 to arterial–venous O2 difference ratio as a resuscitation target in shock states? Intensive Care Med. 2015;41:91–3.CrossRef Jakob SM, Groeneveld AB, Teboul JL. Venous–arterial CO2 to arterial–venous O2 difference ratio as a resuscitation target in shock states? Intensive Care Med. 2015;41:91–3.CrossRef
35.
go back to reference Jakob SM, Kosonen P, Ruokonen E, Parviainen I, Takala J. Haldane effect-an alternative explanation for increasing gastric mucosal PCO2 gradients? Br J Anaesth. 1999;83:740–6.CrossRefPubMed Jakob SM, Kosonen P, Ruokonen E, Parviainen I, Takala J. Haldane effect-an alternative explanation for increasing gastric mucosal PCO2 gradients? Br J Anaesth. 1999;83:740–6.CrossRefPubMed
36.
go back to reference Teboul JL, Scheeren T. Understanding the Haldane effect. Intensive Care Med. 2017;43:936–8.CrossRef Teboul JL, Scheeren T. Understanding the Haldane effect. Intensive Care Med. 2017;43:936–8.CrossRef
37.
go back to reference Teboul JL, Mercat A, Lenique F, Berton C, Richard C. Value of the venous–arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med. 1998;26:1007–10.CrossRefPubMed Teboul JL, Mercat A, Lenique F, Berton C, Richard C. Value of the venous–arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med. 1998;26:1007–10.CrossRefPubMed
38.
go back to reference Mallat J, Benzidi Y, Salleron J, Lemyze M, Gasan G, Vangrunderbeeck N, et al. Time course of central venous-to-arterial carbon dioxide tension difference in septic shock patients receiving incremental doses of dobutamine. Intensive Care Med. 2014;40:404–11.CrossRefPubMed Mallat J, Benzidi Y, Salleron J, Lemyze M, Gasan G, Vangrunderbeeck N, et al. Time course of central venous-to-arterial carbon dioxide tension difference in septic shock patients receiving incremental doses of dobutamine. Intensive Care Med. 2014;40:404–11.CrossRefPubMed
39.
go back to reference Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial–venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41:1412–20.CrossRefPubMed Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial–venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41:1412–20.CrossRefPubMed
40.
go back to reference Mallat J, Lemyze M, Meddour M, Pepy F, Gasan G, et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann Intensive Care. 2016;6:10.CrossRefPubMedPubMedCentral Mallat J, Lemyze M, Meddour M, Pepy F, Gasan G, et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann Intensive Care. 2016;6:10.CrossRefPubMedPubMedCentral
Metadata
Title
Acute hyperventilation increases the central venous-to-arterial PCO2 difference in stable septic shock patients
Authors
Jihad Mallat
Usman Mohammad
Malcolm Lemyze
Mehdi Meddour
Marie Jonard
Florent Pepy
Gaelle Gasan
Stephanie Barrailler
Johanna Temime
Nicolas Vangrunderbeeck
Laurent Tronchon
Didier Thevenin
Publication date
01-12-2017
Publisher
Springer Paris
Published in
Annals of Intensive Care / Issue 1/2017
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-017-0258-5

Other articles of this Issue 1/2017

Annals of Intensive Care 1/2017 Go to the issue