Skip to main content
Top
Published in: Annals of Intensive Care 1/2017

Open Access 01-12-2017 | Research

Goal-directed fluid restriction during brain surgery: a prospective randomized controlled trial

Authors: Jinfeng Luo, Jing Xue, Jin Liu, Bin Liu, Li Liu, Guo Chen

Published in: Annals of Intensive Care | Issue 1/2017

Login to get access

Abstract

Background

The value of goal-directed fluid therapy in neurosurgical patients, where brain swelling is a major concern, is unknown. The aim of our study was to evaluate the effect of an intraoperative goal-directed fluid restriction (GDFR) strategy on the postoperative outcome of high-risk patients undergoing brain surgery.

Methods

High-risk patients undergoing brain surgery were randomly assigned to a usual care group (control group) or a GDFR group. In the GDFR group, (1) fluid maintenance was restricted to 3 ml/kg/h of a crystalloid solution and (2) colloid boluses were allowed only in case of hypotension associated with a low cardiac index and a high stroke volume variation. The primary outcome variable was ICU length of stay, and secondary outcomes were lactates at the end of surgery, postoperative complications, hospital length of stay, mortality at day 30, and costs.

Results

A total of 73 patients from the GDFR group were compared with 72 patients from the control group. Before surgery, the two groups were comparable. During surgery, the GDFR group received less colloid (1.9 ± 1.1 vs. 3.9 ± 1.6 ml/kg/h, p = 0.021) and less crystalloid (3 ± 0 vs. 5.0 ± 2.8 ml/kg/h, p < 0.001) than the control group. ICU length of stay was shorter (3 days [1–5] vs. 6 days [3–11], p = 0.001) and ICU costs were lower in the GDFR group. The total number of complications (46 vs. 99, p = 0.043) and the proportion of patients who developed one or more complications (19.2 vs. 34.7%, p = 0.034) were smaller in the GDFR group. Hospital length of stay and costs, as well as mortality at 30 day, were not significantly reduced.

Conclusion

In high-risk patients undergoing brain surgery, intraoperative GDFR was associated with a reduction in ICU length of stay and costs, and a decrease in postoperative morbidity.
Trial registration Chinese Clinical Trial Registry ChiCTR-TRC-13003583, Registered 20 Aug, 2013
Literature
1.
2.
go back to reference Lilot M, Ehrenfeld JM, Lee C, Harrington B, Cannesson M, Rinehart J. Variability in practice and factors predictive of total crystalloid administration during abdominal surgery: retrospective two-centre analysis. Br J Anaesth. 2015;114:767–76.CrossRefPubMed Lilot M, Ehrenfeld JM, Lee C, Harrington B, Cannesson M, Rinehart J. Variability in practice and factors predictive of total crystalloid administration during abdominal surgery: retrospective two-centre analysis. Br J Anaesth. 2015;114:767–76.CrossRefPubMed
3.
go back to reference Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112:1392–402.CrossRefPubMed Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112:1392–402.CrossRefPubMed
4.
go back to reference Grocott MP, Dushianthan A, Hamilton MA, Mythen MG, Harrison D, Rowan K. Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane Systematic Review. Br J Anaesth. 2013;111:535–48.CrossRefPubMed Grocott MP, Dushianthan A, Hamilton MA, Mythen MG, Harrison D, Rowan K. Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane Systematic Review. Br J Anaesth. 2013;111:535–48.CrossRefPubMed
5.
go back to reference Pearse RM, Harrison DA, MacDonald N, Gillies MA, Blunt M, Ackland G, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311:2181–90.CrossRefPubMed Pearse RM, Harrison DA, MacDonald N, Gillies MA, Blunt M, Ackland G, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311:2181–90.CrossRefPubMed
6.
go back to reference Benes J, Giglio M, Brienza N, Michard F. The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials. Crit Care. 2014;18:584.CrossRefPubMedPubMedCentral Benes J, Giglio M, Brienza N, Michard F. The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials. Crit Care. 2014;18:584.CrossRefPubMedPubMedCentral
7.
go back to reference Tummala RP, Sheth RN, Heros RC. Hemodilution and fluid management in neurosurgery. Clin Neurosurg. 2006;53:238–51.PubMed Tummala RP, Sheth RN, Heros RC. Hemodilution and fluid management in neurosurgery. Clin Neurosurg. 2006;53:238–51.PubMed
8.
go back to reference Tommasino C. Fluids and the neurosurgical patient. Anesthesiol Clin North Am. 2002;20:329–46.CrossRef Tommasino C. Fluids and the neurosurgical patient. Anesthesiol Clin North Am. 2002;20:329–46.CrossRef
10.
go back to reference Michard F, Biais M. Rational fluid management: dissecting facts from fiction. Br J Anaesth. 2012;108:369–71.CrossRefPubMed Michard F, Biais M. Rational fluid management: dissecting facts from fiction. Br J Anaesth. 2012;108:369–71.CrossRefPubMed
11.
go back to reference Holte K, Sharrock NE, Kehlet H. Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth. 2002;89:622–32.CrossRefPubMed Holte K, Sharrock NE, Kehlet H. Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth. 2002;89:622–32.CrossRefPubMed
12.
go back to reference Thacker JK, Mountford WK, Ernst FR, Krukas MR, Mythen MM. Perioperative fluid utilization variability and association with outcomes: considerations for enhanced recovery efforts in sample US surgical populations. Ann Surg. 2016;263:502–10.CrossRefPubMed Thacker JK, Mountford WK, Ernst FR, Krukas MR, Mythen MM. Perioperative fluid utilization variability and association with outcomes: considerations for enhanced recovery efforts in sample US surgical populations. Ann Surg. 2016;263:502–10.CrossRefPubMed
13.
go back to reference Yang X, Du B. Does pulse pressure variation predicts fluid responsiveness in critically ill patients: a critical review and meta-analysis. Crit Care. 2014;18:650.CrossRefPubMedPubMedCentral Yang X, Du B. Does pulse pressure variation predicts fluid responsiveness in critically ill patients: a critical review and meta-analysis. Crit Care. 2014;18:650.CrossRefPubMedPubMedCentral
14.
go back to reference Dunki-Jacobs EM, Philips P, Scoggins CR, McMasters KM, Martin RC. Stroke volume variation in hepatic resection: a replacement for standard central venous pressure monitoring. Ann Surg Oncol. 2014;21:473–8.CrossRefPubMed Dunki-Jacobs EM, Philips P, Scoggins CR, McMasters KM, Martin RC. Stroke volume variation in hepatic resection: a replacement for standard central venous pressure monitoring. Ann Surg Oncol. 2014;21:473–8.CrossRefPubMed
15.
go back to reference Sadique Z, Harrison DA, Grieve R, Rowan KM, Pearse RM, OPTIMISE study group. Cost-effectiveness of a cardiac output-guided haemodynamic therapy algorithm in high-risk patients undergoing major gastrointestinal surgery. Perioper Med (Lond). 2015;4:13.CrossRef Sadique Z, Harrison DA, Grieve R, Rowan KM, Pearse RM, OPTIMISE study group. Cost-effectiveness of a cardiac output-guided haemodynamic therapy algorithm in high-risk patients undergoing major gastrointestinal surgery. Perioper Med (Lond). 2015;4:13.CrossRef
16.
go back to reference Hand WR, Stoll WD, McEvoy MD, McSwain JR, Sealy CD, Skoner JM, et al. Intraoperative goal-directed hemodynamic management in free tissue transfer for head and neck cancer. Head Neck. 2016;38:1974–80.CrossRef Hand WR, Stoll WD, McEvoy MD, McSwain JR, Sealy CD, Skoner JM, et al. Intraoperative goal-directed hemodynamic management in free tissue transfer for head and neck cancer. Head Neck. 2016;38:1974–80.CrossRef
17.
go back to reference Manecke GR, Asemota A, Michard F. Tackling the economic burden of post-surgical complications: would perioperative goal directed fluid therapy help? Crit Care. 2014;18:566.CrossRefPubMedPubMedCentral Manecke GR, Asemota A, Michard F. Tackling the economic burden of post-surgical complications: would perioperative goal directed fluid therapy help? Crit Care. 2014;18:566.CrossRefPubMedPubMedCentral
18.
go back to reference Ebm C, Cecconi M, Sutton L, Rhodes A. A cost-effectiveness analysis of postoperative goal-directed therapy for high-risk surgical patients. Crit Care Med. 2014;42:1194–203.CrossRefPubMed Ebm C, Cecconi M, Sutton L, Rhodes A. A cost-effectiveness analysis of postoperative goal-directed therapy for high-risk surgical patients. Crit Care Med. 2014;42:1194–203.CrossRefPubMed
20.
go back to reference Slagt C, Malagon I, Groeneveld J. Systematic review of uncalibrated arterial pressure waveform analysis to determine cardiac output and stroke volume variation. Br J Anaesth. 2014;112:626–37.CrossRefPubMed Slagt C, Malagon I, Groeneveld J. Systematic review of uncalibrated arterial pressure waveform analysis to determine cardiac output and stroke volume variation. Br J Anaesth. 2014;112:626–37.CrossRefPubMed
21.
go back to reference Peyton PJ, Chong SW. Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision. Anesthesiology. 2010;113:1220–35.CrossRefPubMed Peyton PJ, Chong SW. Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision. Anesthesiology. 2010;113:1220–35.CrossRefPubMed
Metadata
Title
Goal-directed fluid restriction during brain surgery: a prospective randomized controlled trial
Authors
Jinfeng Luo
Jing Xue
Jin Liu
Bin Liu
Li Liu
Guo Chen
Publication date
01-12-2017
Publisher
Springer Paris
Published in
Annals of Intensive Care / Issue 1/2017
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-017-0239-8

Other articles of this Issue 1/2017

Annals of Intensive Care 1/2017 Go to the issue