Skip to main content
Top
Published in: Annals of Intensive Care 1/2016

Open Access 01-12-2016 | Research

Impact of a high loading dose of amikacin in patients with severe sepsis or septic shock

Authors: Nicolas Allou, Astrid Bouteau, Jérôme Allyn, Aurélie Snauwaert, Dorothée Valance, Julien Jabot, Bruno Bouchet, Richard Galliot, Laure Corradi, Philippe Montravers, Pascal Augustin

Published in: Annals of Intensive Care | Issue 1/2016

Login to get access

Abstract

Background

The therapeutic effect of aminoglycosides is highest and optimal when the peak plasma concentration (C max)/minimal inhibitory concentration (MIC) ratio is between 8 and 10. The French guidelines recommend to use high doses of aminoglycosides for empiric antibiotic therapy in patients suffering from severe sepsis or septic shock. In clinical practice, the recommended target is an amikacin C max between 60 and 80 mg/L, which corresponds to approximately 8 times the MIC breakpoint, as defined by the European Committee on Antimicrobial Susceptibility Testing. The aim of this study was to assess the incidence and impact on mortality of an amikacin concentration between 60 and 80 mg/L in patients suffering from severe sepsis or septic shock.

Methods

This was a prospective observational cohort study conducted in two intensive care units (ICU). Patients receiving amikacin at a loading dose of 30 mg/kg for severe sepsis or septic shock were enrolled in the cohort. The target C max for amikacin was between 60 and 80 mg/L, as recommended by French guidelines (i.e. C max/MIC breakpoint = 8–10).

Results

Over the study period, the amikacin C max was <60 mg/L, between 60 and 80 mg/L, and >80 mg/L in 20 (18.2%), 46 (41.8%) and 44 (40%) of the 110 selected patients, respectively. Mortality rate was 40, 28.3 and 56.8% in the groups of patients with C max < 60 mg/L, 60 mg/L < C max < 80 mg/L and C max > 80 mg/L, respectively. Following multivariate analysis, mortality rate was significantly lower in the group of patients with amikacin C max between 60 and 80 mg/L than in the group of patients with amikacin C max > 80 mg/L (P = 0.004). The multivariate analysis also revealed that the factors independently associated with a higher in-ICU mortality rate were age (P = 0.02) and norepinephrine dose (P = 0.0001).

Conclusions

With a loading dose of 30 mg/kg of amikacin, concentration was potentially suboptimal (C max < 60 mg/L) in only 18.2% of patients. The pharmacodynamic target (60 mg/L < C max < 80 mg/L) recommended by French guidelines was reached in 41.8% of patients and was associated with reduced in-ICU mortality. But amikacin overexposure (i.e. C max > 80 mg/L) was frequent and potentially associated with increased mortality.
Literature
1.
go back to reference Kumar A, Safdar N, Kethireddy S, Chateau D. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med. 2010;38:1651–4.CrossRefPubMed Kumar A, Safdar N, Kethireddy S, Chateau D. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med. 2010;38:1651–4.CrossRefPubMed
2.
go back to reference Kumar A, Zarychanski R, Light B, et al. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: a propensity-matched analysis. Crit Care Med. 2010;38:1773–85.CrossRefPubMed Kumar A, Zarychanski R, Light B, et al. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: a propensity-matched analysis. Crit Care Med. 2010;38:1773–85.CrossRefPubMed
3.
go back to reference Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155:93–9.CrossRefPubMed Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155:93–9.CrossRefPubMed
4.
go back to reference Update on good use of injectable aminoglycosides, gentamycin, tobramycin, netilmycin, amikacin. Pharmacological properties, indications, dosage, and mode of administration, treatment monitoring. Med et Mal Infect 2012; 42:301–308. Update on good use of injectable aminoglycosides, gentamycin, tobramycin, netilmycin, amikacin. Pharmacological properties, indications, dosage, and mode of administration, treatment monitoring. Med et Mal Infect 2012; 42:301–308.
6.
go back to reference de Montmollin E, Bouadma L, Gault N, et al. Predictors of insufficient amikacin peak concentration in critically ill patients receiving a 25 mg/kg total body weight regimen. Intensive Care Med. 2014;40:998–1005.CrossRefPubMed de Montmollin E, Bouadma L, Gault N, et al. Predictors of insufficient amikacin peak concentration in critically ill patients receiving a 25 mg/kg total body weight regimen. Intensive Care Med. 2014;40:998–1005.CrossRefPubMed
7.
go back to reference Taccone FS, Laterre PF, Spapen H, et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care. 2010;14:R53.CrossRefPubMedPubMedCentral Taccone FS, Laterre PF, Spapen H, et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care. 2010;14:R53.CrossRefPubMedPubMedCentral
8.
go back to reference Roger C, Nucci B, Louart B, et al. Impact of 30 mg/kg amikacin and 8 mg/kg gentamicin on serum concentrations in critically ill patients with severe sepsis. J Antimicrob Chemother. 2016;71:208–12.CrossRefPubMed Roger C, Nucci B, Louart B, et al. Impact of 30 mg/kg amikacin and 8 mg/kg gentamicin on serum concentrations in critically ill patients with severe sepsis. J Antimicrob Chemother. 2016;71:208–12.CrossRefPubMed
9.
go back to reference Galvez R, Luengo C, Cornejo R, et al. Higher than recommended amikacin loading doses achieve pharmacokinetic targets without associated toxicity. Int J Antimicrob Agents. 2011;38:146–51.CrossRefPubMed Galvez R, Luengo C, Cornejo R, et al. Higher than recommended amikacin loading doses achieve pharmacokinetic targets without associated toxicity. Int J Antimicrob Agents. 2011;38:146–51.CrossRefPubMed
10.
go back to reference von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370:1453–7.CrossRef von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370:1453–7.CrossRef
11.
go back to reference Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228.CrossRefPubMed Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228.CrossRefPubMed
12.
go back to reference Blaser J, Konig C, Fatio R, et al. Multicenter quality control study of amikacin assay for monitoring once-daily dosing regimens. International Antimicrobial Therapy Cooperative Group of the European Organization for Research and Treatment of Cancer. Ther Drug Monit. 1995;17:133–6.CrossRefPubMed Blaser J, Konig C, Fatio R, et al. Multicenter quality control study of amikacin assay for monitoring once-daily dosing regimens. International Antimicrobial Therapy Cooperative Group of the European Organization for Research and Treatment of Cancer. Ther Drug Monit. 1995;17:133–6.CrossRefPubMed
13.
go back to reference Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2007;165:710–8.CrossRefPubMed Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2007;165:710–8.CrossRefPubMed
14.
go back to reference Dubois V, Arpin C, Dupart V, et al. Beta-lactam and aminoglycoside resistance rates and mechanisms among Pseudomonas aeruginosa in French general practice (community and private healthcare centres). J Antimicrob Chemother. 2008;62:316–23.CrossRefPubMed Dubois V, Arpin C, Dupart V, et al. Beta-lactam and aminoglycoside resistance rates and mechanisms among Pseudomonas aeruginosa in French general practice (community and private healthcare centres). J Antimicrob Chemother. 2008;62:316–23.CrossRefPubMed
15.
go back to reference Durante-Mangoni E, Grammatikos A, Utili R, et al. Do we still need the aminoglycosides? Int J Antimicrob Agents. 2009;33:201–5.CrossRefPubMed Durante-Mangoni E, Grammatikos A, Utili R, et al. Do we still need the aminoglycosides? Int J Antimicrob Agents. 2009;33:201–5.CrossRefPubMed
16.
go back to reference Leibovici L, Vidal L, Paul M. Aminoglycoside drugs in clinical practice: an evidence-based approach. J Antimicrob Chemother. 2009;63:246–51.CrossRefPubMed Leibovici L, Vidal L, Paul M. Aminoglycoside drugs in clinical practice: an evidence-based approach. J Antimicrob Chemother. 2009;63:246–51.CrossRefPubMed
17.
go back to reference Bhat S, Fujitani S, Potoski BA, et al. Pseudomonas aeruginosa infections in the intensive care unit: can the adequacy of empirical beta-lactam antibiotic therapy be improved? Int J Antimicrob Agents. 2007;30:458–62.CrossRefPubMed Bhat S, Fujitani S, Potoski BA, et al. Pseudomonas aeruginosa infections in the intensive care unit: can the adequacy of empirical beta-lactam antibiotic therapy be improved? Int J Antimicrob Agents. 2007;30:458–62.CrossRefPubMed
18.
go back to reference Beardsley JR, Williamson JC, Johnson JW, et al. Using local microbiologic data to develop institution-specific guidelines for the treatment of hospital-acquired pneumonia. Chest. 2006;130:787–93.CrossRefPubMed Beardsley JR, Williamson JC, Johnson JW, et al. Using local microbiologic data to develop institution-specific guidelines for the treatment of hospital-acquired pneumonia. Chest. 2006;130:787–93.CrossRefPubMed
19.
go back to reference Verhamme KM, De Coster W, De Roo L, De Beenhouwer H, Nollet G, Verbeke J, Demeyer I, Jordens P. Pathogens in early-onset and late-onset intensive care unit–acquired pneumonia. Infect Control Hosp Epidemiol. 2007;28:389–97.CrossRefPubMed Verhamme KM, De Coster W, De Roo L, De Beenhouwer H, Nollet G, Verbeke J, Demeyer I, Jordens P. Pathogens in early-onset and late-onset intensive care unit–acquired pneumonia. Infect Control Hosp Epidemiol. 2007;28:389–97.CrossRefPubMed
20.
go back to reference Allou N, Allyn J, Snauwaert A, Welsch C, Lucet JC, Kortbaoui R, Desmard M, Augustin P, Montravers P. Postoperative pneumonia following cardiac surgery acquired in non-ventilated patients versus acquired in mechanically ventilated patients: is there any difference? Crit Care. 2015;11(19):116. doi:10.1186/s13054-015-0845-5.CrossRef Allou N, Allyn J, Snauwaert A, Welsch C, Lucet JC, Kortbaoui R, Desmard M, Augustin P, Montravers P. Postoperative pneumonia following cardiac surgery acquired in non-ventilated patients versus acquired in mechanically ventilated patients: is there any difference? Crit Care. 2015;11(19):116. doi:10.​1186/​s13054-015-0845-5.CrossRef
21.
go back to reference Paul M, Lador A, Grozinsky-Glasberg S, et al. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev. 2014;1:CD003344. Paul M, Lador A, Grozinsky-Glasberg S, et al. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev. 2014;1:CD003344.
22.
go back to reference Buchholtz K, Larsen CT, Hassager C, et al. Severity of gentamicin’s nephrotoxic effect on patients with infective endocarditis: a prospective observational cohort study of 373 patients. Clin Infect Dis. 2009;48:65–71.CrossRefPubMed Buchholtz K, Larsen CT, Hassager C, et al. Severity of gentamicin’s nephrotoxic effect on patients with infective endocarditis: a prospective observational cohort study of 373 patients. Clin Infect Dis. 2009;48:65–71.CrossRefPubMed
23.
go back to reference Rees VE, Bulitta JB, Oliver A et al. Resistance suppression by high-intensity, short-duration aminoglycoside exposure against hypermutable and non-hypermutable Pseudomonas aeruginosa. J Antimicrob Chemother. 2016 Aug 11. pii: dkw297. Rees VE, Bulitta JB, Oliver A et al. Resistance suppression by high-intensity, short-duration aminoglycoside exposure against hypermutable and non-hypermutable Pseudomonas aeruginosa. J Antimicrob Chemother. 2016 Aug 11. pii: dkw297.
24.
go back to reference Pajot O, Burdet C, Couffignal C, et al. Impact of imipenem and amikacin pharmacokinetic/pharmacodynamic parameters on microbiological outcome of Gram-negative bacilli ventilator-associated pneumonia. J Antimicrob Chemother. 2015;70:1487–94.CrossRefPubMed Pajot O, Burdet C, Couffignal C, et al. Impact of imipenem and amikacin pharmacokinetic/pharmacodynamic parameters on microbiological outcome of Gram-negative bacilli ventilator-associated pneumonia. J Antimicrob Chemother. 2015;70:1487–94.CrossRefPubMed
25.
go back to reference Boyer A, Gruson D, Bouchet S, et al. Aminoglycosides in septic shock: an overview, with specific consideration given to their nephrotoxic risk. Drug Saf. 2013;36:217–30.CrossRefPubMed Boyer A, Gruson D, Bouchet S, et al. Aminoglycosides in septic shock: an overview, with specific consideration given to their nephrotoxic risk. Drug Saf. 2013;36:217–30.CrossRefPubMed
26.
27.
go back to reference Tabah A, De Waele J, Lipman J et al; Working Group for Antimicrobial Use in the ICU within the Infection Section of the European Society of Intensive Care Medicine (ESICM). The ADMIN-ICU survey: a survey on antimicrobial dosing and monitoring in ICUs. J Antimicrob Chemother 2015; 70:2671–2677. Tabah A, De Waele J, Lipman J et al; Working Group for Antimicrobial Use in the ICU within the Infection Section of the European Society of Intensive Care Medicine (ESICM). The ADMIN-ICU survey: a survey on antimicrobial dosing and monitoring in ICUs. J Antimicrob Chemother 2015; 70:2671–2677.
28.
go back to reference Reilly BM, Evans AT. Translating clinical research into clinical practice: impact of using prediction rules to make decisions. Ann Intern Med. 2006;144:201–9.CrossRefPubMed Reilly BM, Evans AT. Translating clinical research into clinical practice: impact of using prediction rules to make decisions. Ann Intern Med. 2006;144:201–9.CrossRefPubMed
29.
go back to reference McNamara DR, Nafziger AN, Menhinick AM, et al. A dose-ranging study of gentamicin pharmacokinetics: implications for extended interval aminoglycoside therapy. J Clin Pharmacol. 2001;41:374–7.CrossRefPubMed McNamara DR, Nafziger AN, Menhinick AM, et al. A dose-ranging study of gentamicin pharmacokinetics: implications for extended interval aminoglycoside therapy. J Clin Pharmacol. 2001;41:374–7.CrossRefPubMed
30.
go back to reference Demczar DJ, Nafziger AN, Bertino JS Jr. Pharmacokinetics of gentamicin at traditional versus high doses: implications for once-daily aminoglycoside dosing. Antimicrob Agents Chemother. 1997;41:1115–9.PubMedPubMedCentral Demczar DJ, Nafziger AN, Bertino JS Jr. Pharmacokinetics of gentamicin at traditional versus high doses: implications for once-daily aminoglycoside dosing. Antimicrob Agents Chemother. 1997;41:1115–9.PubMedPubMedCentral
Metadata
Title
Impact of a high loading dose of amikacin in patients with severe sepsis or septic shock
Authors
Nicolas Allou
Astrid Bouteau
Jérôme Allyn
Aurélie Snauwaert
Dorothée Valance
Julien Jabot
Bruno Bouchet
Richard Galliot
Laure Corradi
Philippe Montravers
Pascal Augustin
Publication date
01-12-2016
Publisher
Springer Paris
Published in
Annals of Intensive Care / Issue 1/2016
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-016-0211-z

Other articles of this Issue 1/2016

Annals of Intensive Care 1/2016 Go to the issue