Skip to main content
Top
Published in: Annals of Intensive Care 1/2016

Open Access 01-12-2016 | Research

Respiratory mechanics and lung stress/strain in children with acute respiratory distress syndrome

Authors: Davide Chiumello, Giovanna Chidini, Edoardo Calderini, Andrea Colombo, Francesco Crimella, Matteo Brioni

Published in: Annals of Intensive Care | Issue 1/2016

Login to get access

Abstract

Background

In sedated and paralyzed children with acute respiratory failure, the compliance of respiratory system and functional residual capacity were significantly reduced compared with healthy subjects. However, no major studies in children with ARDS have investigated the role of different levels of PEEP and tidal volume on the partitioned respiratory mechanic (lung and chest wall), stress (transpulmonary pressure) and strain (inflated volume above the functional residual capacity).

Methods

The end-expiratory lung volume was measured using a simplified closed circuit helium dilution method. During an inspiratory and expiratory pause, the airway and esophageal pressure were measured. Transpulmonary pressure was computed as the difference between airway and esophageal pressure.

Results

Ten intubated sedated paralyzed healthy children and ten children with ARDS underwent a PEEP trial (4 and 12 cmH2O) with a tidal volume of 8, 10 and 12 ml/kgIBW. The two groups were comparable for age and BMI (2.5 [1.0–5.5] vs 3.0 [1.7–7.2] years and 15.1 ± 2.4 vs 15.3 ± 3.0 kg/m2). The functional residual capacity in ARDS patients was significantly lower as compared to the control group (10.4 [9.1–14.3] vs 16.6 [11.7–24.6] ml/kg, p = 0.04). The ARDS patients had a significantly lower respiratory system and lung compliance as compared to control subjects (9.9 ± 5.0 vs 17.8 ± 6.5, 9.3 ± 4.9 vs 16.9 ± 4.1 at 4 cmH2O of PEEP and 11.7 ± 5.8 vs 23.7 ± 6.8, 10.0 ± 4.9 vs 23.4 ± 7.5 at 12 cmH2O of PEEP). The compliance of the chest wall was similar in both groups (76.7 ± 30.2 vs 94.4 ± 76.4 and 92.6 ± 65.3 vs 90.0 ± 61.7 at 4 and 12 cmH2O of PEEP). The lung stress and strain were significantly higher in ARDS patients as compared to control subjects and were poorly related to airway pressure and tidal volume normalized for body weight.

Conclusions

Airway pressures and tidal volume normalized to body weight are poor surrogates for lung stress and strain in mild pediatric ARDS.
Trial registration: Clinialtrials.gov NCT02036801. Registered 13 January 2014
Appendix
Available only for authorised users
Literature
1.
go back to reference Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: consensus recommendations from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2015;16:428–39. Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: consensus recommendations from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2015;16:428–39.
2.
go back to reference De Luca D, Piastra M, Chidini G, Tissieres P, Calderini E, Essouri S, Medina Villanueva A, Vivanco Allende A, Pons-Odena M, Perez-Baena L, Hermon M, Tridente A, Conti G, Antonelli M, Kneyber M. Respiratory Section of the European Society for Pediatric Neonatal Intensive Care (ESPNIC): The use of the Berlin definition for acute respiratory distress syndrome during infancy and early childhood: multicenter evaluation and expert consensus. Intensive Care Med. 2013;39:2083–91.CrossRefPubMed De Luca D, Piastra M, Chidini G, Tissieres P, Calderini E, Essouri S, Medina Villanueva A, Vivanco Allende A, Pons-Odena M, Perez-Baena L, Hermon M, Tridente A, Conti G, Antonelli M, Kneyber M. Respiratory Section of the European Society for Pediatric Neonatal Intensive Care (ESPNIC): The use of the Berlin definition for acute respiratory distress syndrome during infancy and early childhood: multicenter evaluation and expert consensus. Intensive Care Med. 2013;39:2083–91.CrossRefPubMed
3.
go back to reference ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33.
4.
go back to reference Zimmerman JJ, Akhtar SR, Caldwell E, Rubenfeld GD. Incidence and outcomes of pediatric acute lung injury. Pediatrics. 2009;124:87–95.CrossRefPubMed Zimmerman JJ, Akhtar SR, Caldwell E, Rubenfeld GD. Incidence and outcomes of pediatric acute lung injury. Pediatrics. 2009;124:87–95.CrossRefPubMed
5.
go back to reference Erickson S, Schibler A, Numa A, Nuthall G, Yung M, Pascoe E, Wilkins B, Paediatric Study Group, Australian and New Zealand Intensive Care Society. Acute lung injury in pediatric intensive care in Australia and New Zealand: a prospective, multicenter, observational study. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2007;8:317–23. Erickson S, Schibler A, Numa A, Nuthall G, Yung M, Pascoe E, Wilkins B, Paediatric Study Group, Australian and New Zealand Intensive Care Society. Acute lung injury in pediatric intensive care in Australia and New Zealand: a prospective, multicenter, observational study. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2007;8:317–23.
6.
7.
go back to reference Yu W-L, Lu Z-J, Wang Y, Shi L-P, Kuang F-W, Qian S-Y, Zeng Q-Y, Xie M-H, Zhang G-Y, Zhuang D-Y, Fan X-M, Sun B. Collaborative Study Group of Pediatric Respiratory Failure: the epidemiology of acute respiratory distress syndrome in pediatric intensive care units in China. Intensive Care Med. 2009;35:136–43.CrossRefPubMed Yu W-L, Lu Z-J, Wang Y, Shi L-P, Kuang F-W, Qian S-Y, Zeng Q-Y, Xie M-H, Zhang G-Y, Zhuang D-Y, Fan X-M, Sun B. Collaborative Study Group of Pediatric Respiratory Failure: the epidemiology of acute respiratory distress syndrome in pediatric intensive care units in China. Intensive Care Med. 2009;35:136–43.CrossRefPubMed
8.
go back to reference López-Fernández Y, Azagra AM, de la Oliva P, Modesto V, Sánchez JI, Parrilla J, Arroyo MJ, Reyes SB, Pons-Ódena M, López-Herce J, Fernández RL, Kacmarek RM, Villar J. Pediatric Acute Lung Injury Epidemiology and Natural History (PED-ALIEN) Network: pediatric acute lung injury epidemiology and natural history study: incidence and outcome of the acute respiratory distress syndrome in children. Crit Care Med. 2012;40:3238–45.CrossRefPubMed López-Fernández Y, Azagra AM, de la Oliva P, Modesto V, Sánchez JI, Parrilla J, Arroyo MJ, Reyes SB, Pons-Ódena M, López-Herce J, Fernández RL, Kacmarek RM, Villar J. Pediatric Acute Lung Injury Epidemiology and Natural History (PED-ALIEN) Network: pediatric acute lung injury epidemiology and natural history study: incidence and outcome of the acute respiratory distress syndrome in children. Crit Care Med. 2012;40:3238–45.CrossRefPubMed
9.
go back to reference Khemani RG, Conti D, Alonzo TA, Bart RD, Newth CJL. Effect of tidal volume in children with acute hypoxemic respiratory failure. Intensive Care Med. 2009;35:1428–37.CrossRefPubMed Khemani RG, Conti D, Alonzo TA, Bart RD, Newth CJL. Effect of tidal volume in children with acute hypoxemic respiratory failure. Intensive Care Med. 2009;35:1428–37.CrossRefPubMed
10.
go back to reference Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, Slutsky AS, Pullenayegum E, Zhou Q, Cook D, Brochard L, Richard JC, Lamontagne F, Bhatnagar N, Stewart TE, Guyatt G. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303:865–73.CrossRefPubMed Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, Slutsky AS, Pullenayegum E, Zhou Q, Cook D, Brochard L, Richard JC, Lamontagne F, Bhatnagar N, Stewart TE, Guyatt G. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303:865–73.CrossRefPubMed
11.
go back to reference Flori HR, Glidden DV, Rutherford GW, Matthay MA. Pediatric acute lung injury: prospective evaluation of risk factors associated with mortality. Am J Respir Crit Care Med. 2005;171:995–1001.CrossRefPubMed Flori HR, Glidden DV, Rutherford GW, Matthay MA. Pediatric acute lung injury: prospective evaluation of risk factors associated with mortality. Am J Respir Crit Care Med. 2005;171:995–1001.CrossRefPubMed
12.
go back to reference Bojko T, Notterman DA, Greenwald BM, De Bruin WJ, Magid MS, Godwin T. Acute hypoxemic respiratory failure in children following bone marrow transplantation: an outcome and pathologic study. Crit Care Med. 1995;23:755–9.CrossRefPubMed Bojko T, Notterman DA, Greenwald BM, De Bruin WJ, Magid MS, Godwin T. Acute hypoxemic respiratory failure in children following bone marrow transplantation: an outcome and pathologic study. Crit Care Med. 1995;23:755–9.CrossRefPubMed
13.
go back to reference Dahlem P, van Aalderen WMC, Hamaker ME, Dijkgraaf MGW, Bos AP. Incidence and short-term outcome of acute lung injury in mechanically ventilated children. Eur Respir J. 2003;22:980–5.CrossRefPubMed Dahlem P, van Aalderen WMC, Hamaker ME, Dijkgraaf MGW, Bos AP. Incidence and short-term outcome of acute lung injury in mechanically ventilated children. Eur Respir J. 2003;22:980–5.CrossRefPubMed
14.
go back to reference Randolph AG. Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med. 2009;37:2448–54.CrossRefPubMed Randolph AG. Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med. 2009;37:2448–54.CrossRefPubMed
15.
go back to reference de Jager P, Burgerhof JGM, van Heerde M, Albers MJIJ, Markhorst DG, Kneyber MCJ. Tidal volume and mortality in mechanically ventilated children: a systematic review and meta-analysis of observational studies*. Crit Care Med. 2014;42:2461–72.CrossRefPubMed de Jager P, Burgerhof JGM, van Heerde M, Albers MJIJ, Markhorst DG, Kneyber MCJ. Tidal volume and mortality in mechanically ventilated children: a systematic review and meta-analysis of observational studies*. Crit Care Med. 2014;42:2461–72.CrossRefPubMed
16.
go back to reference Numa AH, Hammer J, Newth CJ. Effect of prone and supine positions on functional residual capacity, oxygenation, and respiratory mechanics in ventilated infants and children. Am J Respir Crit Care Med. 1997;156(4 Pt 1):1185–9.CrossRefPubMed Numa AH, Hammer J, Newth CJ. Effect of prone and supine positions on functional residual capacity, oxygenation, and respiratory mechanics in ventilated infants and children. Am J Respir Crit Care Med. 1997;156(4 Pt 1):1185–9.CrossRefPubMed
17.
go back to reference Sivan Y, Deakers TW, Newth CJ. Functional residual capacity in ventilated infants and children. Pediatr Res. 1990;28:451–4.CrossRefPubMed Sivan Y, Deakers TW, Newth CJ. Functional residual capacity in ventilated infants and children. Pediatr Res. 1990;28:451–4.CrossRefPubMed
18.
go back to reference Sivan Y, Deakers TW, Newth CJ. Effect of positive end-expiratory pressure on respiratory compliance in children with acute respiratory failure. Pediatr Pulmonol. 1991;11:103–7.CrossRefPubMed Sivan Y, Deakers TW, Newth CJ. Effect of positive end-expiratory pressure on respiratory compliance in children with acute respiratory failure. Pediatr Pulmonol. 1991;11:103–7.CrossRefPubMed
19.
go back to reference Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, Tallarini F, Cozzi P, Cressoni M, Colombo A, Marini JJ, Gattinoni L. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.CrossRefPubMed Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, Tallarini F, Cozzi P, Cressoni M, Colombo A, Marini JJ, Gattinoni L. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.CrossRefPubMed
20.
go back to reference Protti A, Cressoni M, Santini A, Langer T, Mietto C, Febres D, Chierichetti M, Coppola S, Conte G, Gatti S, Leopardi O, Masson S, Lombardi L, Lazzerini M, Rampoldi E, Cadringher P, Gattinoni L. Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med. 2011;183:1354–62.CrossRefPubMed Protti A, Cressoni M, Santini A, Langer T, Mietto C, Febres D, Chierichetti M, Coppola S, Conte G, Gatti S, Leopardi O, Masson S, Lombardi L, Lazzerini M, Rampoldi E, Cadringher P, Gattinoni L. Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med. 2011;183:1354–62.CrossRefPubMed
21.
go back to reference Chiumello D, Cressoni M, Colombo A, Babini G, Brioni M, Crimella F, Lundin S, Stenqvist O, Gattinoni L. The assessment of transpulmonary pressure in mechanically ventilated ARDS patients. Intensive Care Med. 2014;40(11):1670–8CrossRefPubMed Chiumello D, Cressoni M, Colombo A, Babini G, Brioni M, Crimella F, Lundin S, Stenqvist O, Gattinoni L. The assessment of transpulmonary pressure in mechanically ventilated ARDS patients. Intensive Care Med. 2014;40(11):1670–8CrossRefPubMed
22.
go back to reference Pelosi P, Cereda M, Foti G, Giacomini M, Pesenti A. Alterations of lung and chest wall mechanics in patients with acute lung injury: effects of positive end-expiratory pressure. Am J Respir Crit Care Med. 1995;152:531–7.CrossRefPubMed Pelosi P, Cereda M, Foti G, Giacomini M, Pesenti A. Alterations of lung and chest wall mechanics in patients with acute lung injury: effects of positive end-expiratory pressure. Am J Respir Crit Care Med. 1995;152:531–7.CrossRefPubMed
23.
go back to reference Kneyber MCJ, Zhang H, Slutsky AS. Ventilator-induced lung injury. Similarity and differences between children and adults. Am J Respir Crit Care Med. 2014;190:258–65.PubMed Kneyber MCJ, Zhang H, Slutsky AS. Ventilator-induced lung injury. Similarity and differences between children and adults. Am J Respir Crit Care Med. 2014;190:258–65.PubMed
24.
go back to reference Papastamelos C, Panitch HB, England SE, Allen JL. Developmental changes in chest wall compliance in infancy and early childhood. J Appl Physiol Bethesda Md. 1985;1995(78):179–84. Papastamelos C, Panitch HB, England SE, Allen JL. Developmental changes in chest wall compliance in infancy and early childhood. J Appl Physiol Bethesda Md. 1985;1995(78):179–84.
25.
go back to reference Papastamelos C, Panitch HB, Allen JL. Chest wall compliance in infants and children with neuromuscular disease. Am J Respir Crit Care Med. 1996;154(4 Pt 1):1045–8.CrossRefPubMed Papastamelos C, Panitch HB, Allen JL. Chest wall compliance in infants and children with neuromuscular disease. Am J Respir Crit Care Med. 1996;154(4 Pt 1):1045–8.CrossRefPubMed
26.
go back to reference Kornecki A, Tsuchida S, Ondiveeran HK, Engelberts D, Frndova H, Tanswell AK, Post M, McKerlie C, Belik J, Fox-Robichaud A, Kavanagh BP. Lung development and susceptibility to ventilator-induced lung injury. Am J Respir Crit Care Med. 2005;171:743–52.CrossRefPubMed Kornecki A, Tsuchida S, Ondiveeran HK, Engelberts D, Frndova H, Tanswell AK, Post M, McKerlie C, Belik J, Fox-Robichaud A, Kavanagh BP. Lung development and susceptibility to ventilator-induced lung injury. Am J Respir Crit Care Med. 2005;171:743–52.CrossRefPubMed
27.
go back to reference Caironi P, Langer T, Carlesso E, Protti A, Gattinoni L. Time to generate ventilator-induced lung injury among mammals with healthy lungs: a unifying hypothesis. Intensive Care Med. 2011;37:1913–20.CrossRefPubMed Caironi P, Langer T, Carlesso E, Protti A, Gattinoni L. Time to generate ventilator-induced lung injury among mammals with healthy lungs: a unifying hypothesis. Intensive Care Med. 2011;37:1913–20.CrossRefPubMed
28.
go back to reference Nisbet HI, Levison H, Pelton DA. Static thoracic compliance in normal children under general anaesthesia. Acta Anaesthesiol Scand. 1971;15:179–91.CrossRefPubMed Nisbet HI, Levison H, Pelton DA. Static thoracic compliance in normal children under general anaesthesia. Acta Anaesthesiol Scand. 1971;15:179–91.CrossRefPubMed
29.
go back to reference Zapletal A, Paul T, Samanek M. Pulmonary elasticity in children and adolescents. J Appl Physiol. 1976;40:953–61.PubMed Zapletal A, Paul T, Samanek M. Pulmonary elasticity in children and adolescents. J Appl Physiol. 1976;40:953–61.PubMed
30.
go back to reference Baran D, Yernault JC, Paiva M, Englert M. Static mechanical lung properties in healthy children. Scand J Respir Dis. 1976;57:139–47.PubMed Baran D, Yernault JC, Paiva M, Englert M. Static mechanical lung properties in healthy children. Scand J Respir Dis. 1976;57:139–47.PubMed
31.
go back to reference Tepper RS, Williams T, Kisling J, Castile R. Static compliance of the respiratory system in healthy infants. Am J Respir Crit Care Med. 2001;163:91–4.CrossRefPubMed Tepper RS, Williams T, Kisling J, Castile R. Static compliance of the respiratory system in healthy infants. Am J Respir Crit Care Med. 2001;163:91–4.CrossRefPubMed
32.
go back to reference Ingimarsson J, Thorsteinsson A, Larsson A, Werner O. Lung and chest wall mechanics in anesthetized children. Influence of body position. Am J Respir Crit Care Med. 2000;162(2 Pt 1):412–7.CrossRefPubMed Ingimarsson J, Thorsteinsson A, Larsson A, Werner O. Lung and chest wall mechanics in anesthetized children. Influence of body position. Am J Respir Crit Care Med. 2000;162(2 Pt 1):412–7.CrossRefPubMed
33.
go back to reference Gerhardt T, Hehre D, Feller R, Reifenberg L, Bancalari E. Pulmonary mechanics in normal infants and young children during first 5 years of life. Pediatr Pulmonol. 1987;3:309–16.CrossRefPubMed Gerhardt T, Hehre D, Feller R, Reifenberg L, Bancalari E. Pulmonary mechanics in normal infants and young children during first 5 years of life. Pediatr Pulmonol. 1987;3:309–16.CrossRefPubMed
35.
go back to reference Sharp JT, Druz WS, Balagot RC, Bandelin VR, Danon J. Total respiratory compliance in infants and children. J Appl Physiol. 1970;29:775–9.PubMed Sharp JT, Druz WS, Balagot RC, Bandelin VR, Danon J. Total respiratory compliance in infants and children. J Appl Physiol. 1970;29:775–9.PubMed
36.
go back to reference Fletcher ME, Stocks J, Ridley S, Braude N, Yates AP, Hatch DJ. Total respiratory compliance during anaesthesia in infants and young children. Br J Anaesth. 1989;63:266–75.CrossRefPubMed Fletcher ME, Stocks J, Ridley S, Braude N, Yates AP, Hatch DJ. Total respiratory compliance during anaesthesia in infants and young children. Br J Anaesth. 1989;63:266–75.CrossRefPubMed
37.
38.
go back to reference von Ungern-Sternberg BS, Hammer J, Schibler A, Frei FJ, Erb TO. Decrease of functional residual capacity and ventilation homogeneity after neuromuscular blockade in anesthetized young infants and preschool children. Anesthesiology. 2006;105:670–5.CrossRef von Ungern-Sternberg BS, Hammer J, Schibler A, Frei FJ, Erb TO. Decrease of functional residual capacity and ventilation homogeneity after neuromuscular blockade in anesthetized young infants and preschool children. Anesthesiology. 2006;105:670–5.CrossRef
39.
go back to reference Colin AA, Wohl ME, Mead J, Ratjen FA, Glass G, Stark AR. Transition from dynamically maintained to relaxed end-expiratory volume in human infants. J Appl Physiol Bethesda Md. 1985;1989(67):2107–11. Colin AA, Wohl ME, Mead J, Ratjen FA, Glass G, Stark AR. Transition from dynamically maintained to relaxed end-expiratory volume in human infants. J Appl Physiol Bethesda Md. 1985;1989(67):2107–11.
40.
go back to reference Fisher JT, Mortola JP, Smith JB, Fox GS, Weeks S. Respiration in newborns: development of the control of breathing. Am Rev Respir Dis. 1982;125:650–7.PubMed Fisher JT, Mortola JP, Smith JB, Fox GS, Weeks S. Respiration in newborns: development of the control of breathing. Am Rev Respir Dis. 1982;125:650–7.PubMed
Metadata
Title
Respiratory mechanics and lung stress/strain in children with acute respiratory distress syndrome
Authors
Davide Chiumello
Giovanna Chidini
Edoardo Calderini
Andrea Colombo
Francesco Crimella
Matteo Brioni
Publication date
01-12-2016
Publisher
Springer Paris
Published in
Annals of Intensive Care / Issue 1/2016
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-016-0113-0

Other articles of this Issue 1/2016

Annals of Intensive Care 1/2016 Go to the issue