Skip to main content
Top
Published in: EJNMMI Research 1/2021

Open Access 01-12-2021 | Neuroendocrine Tumor | Original research

Automated liver lesion detection in 68Ga DOTATATE PET/CT using a deep fully convolutional neural network

Authors: Jonathan Wehrend, Michael Silosky, Fuyong Xing, Bennett B. Chin

Published in: EJNMMI Research | Issue 1/2021

Login to get access

Abstract

Background

Gastroenteropancreatic neuroendocrine tumors most commonly metastasize to the liver; however, high normal background 68Ga-DOTATATE activity and high image noise make metastatic lesions difficult to detect. The purpose of this study is to develop a rapid, automated and highly specific method to identify 68Ga-DOTATATE PET/CT hepatic lesions using a 2D U-Net convolutional neural network.

Methods

A retrospective study of 68Ga-DOTATATE PET/CT patient studies (n = 125; 57 with 68Ga-DOTATATE hepatic lesions and 68 without) was evaluated. The dataset was randomly divided into 75 studies for the training set (36 abnormal, 39 normal), 25 for the validation set (11 abnormal, 14 normal) and 25 for the testing set (11 abnormal, 14 normal). Hepatic lesions were physician annotated using a modified PERCIST threshold, and boundary definition by gradient edge detection. The 2D U-Net was trained independently five times for 100,000 iterations using a linear combination of binary cross-entropy and dice losses with a stochastic gradient descent algorithm. Performance metrics included: positive predictive value (PPV), sensitivity, F1 score and area under the precision–recall curve (PR-AUC). Five different pixel area thresholds were used to filter noisy predictions.

Results

A total of 233 lesions were annotated with each abnormal study containing a mean of 4 ± 2.75 lesions. A pixel filter of 20 produced the highest mean PPV 0.94 ± 0.01. A pixel filter of 5 produced the highest mean sensitivity 0.74 ± 0.02. The highest mean F1 score 0.79 ± 0.01 was produced with a 20 pixel filter. The highest mean PR-AUC 0.73 ± 0.03 was produced with a 15 pixel filter.

Conclusion

Deep neural networks can automatically detect hepatic lesions in 68Ga-DOTATATE PET. Ongoing improvements in data annotation methods, increasing sample sizes and training methods are anticipated to further improve detection performance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72.CrossRef Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72.CrossRef
2.
go back to reference Johnbeck CB, Knigge U, Kjær A. PET tracers for somatostatin receptor imaging of neuroendocrine tumors: current status and review of the literature. Future Oncol. 2014;10(14):2259–77.CrossRef Johnbeck CB, Knigge U, Kjær A. PET tracers for somatostatin receptor imaging of neuroendocrine tumors: current status and review of the literature. Future Oncol. 2014;10(14):2259–77.CrossRef
3.
go back to reference Panagiotidis E, Alshammari A, Michopoulou S, Skoura E, Naik K, Maragkoudakis E, et al. Comparison of the impact of 68Ga-DOTATATE and 18F-FDG PET/CT on clinical management in patients with neuroendocrine tumors. J Nucl Med. 2017;58(1):91–6.CrossRef Panagiotidis E, Alshammari A, Michopoulou S, Skoura E, Naik K, Maragkoudakis E, et al. Comparison of the impact of 68Ga-DOTATATE and 18F-FDG PET/CT on clinical management in patients with neuroendocrine tumors. J Nucl Med. 2017;58(1):91–6.CrossRef
4.
go back to reference Riihimäki M, Hemminki A, Sundquist K, Sundquist J, Hemminki K. The epidemiology of metastases in neuroendocrine tumors. Int J Cancer. 2016;139(12):2679–86.CrossRef Riihimäki M, Hemminki A, Sundquist K, Sundquist J, Hemminki K. The epidemiology of metastases in neuroendocrine tumors. Int J Cancer. 2016;139(12):2679–86.CrossRef
5.
go back to reference Sadowski SM, Neychev V, Millo C, Shih J, Nilubol N, Herscovitch P, et al. Prospective study of 68Ga-DOTATATE positron emission tomography/computed tomography for detecting gastro-entero-pancreatic neuroendocrine tumors and unknown primary sites. J Clin Oncol. 2016;34(6):588–96.CrossRef Sadowski SM, Neychev V, Millo C, Shih J, Nilubol N, Herscovitch P, et al. Prospective study of 68Ga-DOTATATE positron emission tomography/computed tomography for detecting gastro-entero-pancreatic neuroendocrine tumors and unknown primary sites. J Clin Oncol. 2016;34(6):588–96.CrossRef
6.
go back to reference Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.CrossRef Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.CrossRef
7.
go back to reference Strosberg J, Leeuwenkamp O, Siddiqui MK. Peptide receptor radiotherapy re-treatment in patients with progressive neuroendocrine tumors: a systematic review and meta-analysis. Cancer Treat Rev. 2021;93:102141.CrossRef Strosberg J, Leeuwenkamp O, Siddiqui MK. Peptide receptor radiotherapy re-treatment in patients with progressive neuroendocrine tumors: a systematic review and meta-analysis. Cancer Treat Rev. 2021;93:102141.CrossRef
8.
go back to reference Haug AR, Auernhammer CJ, Wängler B, Schmidt GP, Uebleis C, Göke B, et al. 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J Nucl Med. 2010;51(9):1349–56.CrossRef Haug AR, Auernhammer CJ, Wängler B, Schmidt GP, Uebleis C, Göke B, et al. 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J Nucl Med. 2010;51(9):1349–56.CrossRef
9.
go back to reference Liberini V, Huellner MW, Grimaldi S, Finessi M, Thuillier P, Muni A, et al. The challenge of evaluating response to peptide receptor radionuclide therapy in gastroenteropancreatic neuroendocrine tumors: the present and the future. Diagnostics (Basel, Switzerland). 2020;10(1083):1-31. Liberini V, Huellner MW, Grimaldi S, Finessi M, Thuillier P, Muni A, et al. The challenge of evaluating response to peptide receptor radionuclide therapy in gastroenteropancreatic neuroendocrine tumors: the present and the future. Diagnostics (Basel, Switzerland). 2020;10(1083):1-31.
10.
go back to reference Fendler WP, Barrio M, Spick C, Allen-Auerbach M, Ambrosini V, Benz M, et al. 68Ga-DOTATATE PET/CT interobserver agreement for neuroendocrine tumor assessment: results of a prospective study on 50 patients. J Nucl Med. 2017;58(2):307–11.CrossRef Fendler WP, Barrio M, Spick C, Allen-Auerbach M, Ambrosini V, Benz M, et al. 68Ga-DOTATATE PET/CT interobserver agreement for neuroendocrine tumor assessment: results of a prospective study on 50 patients. J Nucl Med. 2017;58(2):307–11.CrossRef
11.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.CrossRef Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.CrossRef
12.
go back to reference Halabi SS, Prevedello LM, Kalpathy-Cramer J, Mamonov AB, Bilbily A, Cicero M, et al. The RSNA pediatric bone age machine learning challenge. Radiology. 2019;290(2):498–503.CrossRef Halabi SS, Prevedello LM, Kalpathy-Cramer J, Mamonov AB, Bilbily A, Cicero M, et al. The RSNA pediatric bone age machine learning challenge. Radiology. 2019;290(2):498–503.CrossRef
13.
go back to reference Häggström I, Schmidtlein CR, Campanella G, Fuchs TJ. DeepPET: a deep encoder–decoder network for directly solving the PET image reconstruction inverse problem. Med Image Anal. 2019;54:253–62.CrossRef Häggström I, Schmidtlein CR, Campanella G, Fuchs TJ. DeepPET: a deep encoder–decoder network for directly solving the PET image reconstruction inverse problem. Med Image Anal. 2019;54:253–62.CrossRef
14.
go back to reference Hartenstein A, Lübbe F, Baur ADJ, Rudolph MM, Furth C, Brenner W, et al. Prostate cancer nodal staging: using deep learning to predict (68)Ga-PSMA-positivity from CT imaging alone. Sci Rep. 2020;10(1):3398.CrossRef Hartenstein A, Lübbe F, Baur ADJ, Rudolph MM, Furth C, Brenner W, et al. Prostate cancer nodal staging: using deep learning to predict (68)Ga-PSMA-positivity from CT imaging alone. Sci Rep. 2020;10(1):3398.CrossRef
15.
go back to reference Jemaa S, Fredrickson J, Carano RAD, Nielsen T, de Crespigny A, Bengtsson T. Tumor segmentation and feature extraction from whole-body FDG-PET/CT using cascaded 2D and 3D convolutional neural networks. J Digit Imaging. 2020;33(4):888–94.CrossRef Jemaa S, Fredrickson J, Carano RAD, Nielsen T, de Crespigny A, Bengtsson T. Tumor segmentation and feature extraction from whole-body FDG-PET/CT using cascaded 2D and 3D convolutional neural networks. J Digit Imaging. 2020;33(4):888–94.CrossRef
16.
go back to reference Pfaehler E, Mesotten L, Kramer G, Thomeer M, Vanhove K, de Jong J, et al. Repeatability of two semi-automatic artificial intelligence approaches for tumor segmentation in PET. EJNMMI Res. 2021;11(1):4.CrossRef Pfaehler E, Mesotten L, Kramer G, Thomeer M, Vanhove K, de Jong J, et al. Repeatability of two semi-automatic artificial intelligence approaches for tumor segmentation in PET. EJNMMI Res. 2021;11(1):4.CrossRef
17.
go back to reference Chin BB, Wehrend J, Silosky M, Halley C, Niman R, Moses K, et al. Automated liver lesion detection in 68Ga DOTATATE PET/CT: preliminary results using a deep learning 3D fully convolutional network. J Nucl Med. 2021;62(Suppl 1):1184. Chin BB, Wehrend J, Silosky M, Halley C, Niman R, Moses K, et al. Automated liver lesion detection in 68Ga DOTATATE PET/CT: preliminary results using a deep learning 3D fully convolutional network. J Nucl Med. 2021;62(Suppl 1):1184.
18.
go back to reference He K, Zhang X, Ren S, Sun J, editors. Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR); 2016. 27–30 June 2016. He K, Zhang X, Ren S, Sun J, editors. Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR); 2016. 27–30 June 2016.
20.
go back to reference Taghanaki SA, Zheng Y, Kevin Zhou S, Georgescu B, Sharma P, Xu D, et al. Combo loss: handling input and output imbalance in multi-organ segmentation. Comput Med Imaging Graph. 2019;75:24–33.CrossRef Taghanaki SA, Zheng Y, Kevin Zhou S, Georgescu B, Sharma P, Xu D, et al. Combo loss: handling input and output imbalance in multi-organ segmentation. Comput Med Imaging Graph. 2019;75:24–33.CrossRef
21.
go back to reference Baek S, He Y, Allen BG, Buatti JM, Smith BJ, Tong L, et al. Deep segmentation networks predict survival of non-small cell lung cancer. Sci Rep. 2019;9(1):17286.CrossRef Baek S, He Y, Allen BG, Buatti JM, Smith BJ, Tong L, et al. Deep segmentation networks predict survival of non-small cell lung cancer. Sci Rep. 2019;9(1):17286.CrossRef
22.
go back to reference Choi JH, Kim HA, Kim W, Lim I, Lee I, Byun BH, et al. Early prediction of neoadjuvant chemotherapy response for advanced breast cancer using PET/MRI image deep learning. Sci Rep. 2020;10(1):21149.CrossRef Choi JH, Kim HA, Kim W, Lim I, Lee I, Byun BH, et al. Early prediction of neoadjuvant chemotherapy response for advanced breast cancer using PET/MRI image deep learning. Sci Rep. 2020;10(1):21149.CrossRef
23.
go back to reference Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, et al. A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop. Radiology. 2019;291(3):781–91.CrossRef Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, et al. A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop. Radiology. 2019;291(3):781–91.CrossRef
24.
go back to reference Chin BB, Silosky M, Morgan R, Karki R, Anderson J. 68Ga DOTATATE organ specific tumor signal to noise (S/N) ratios: comparison of lesion detectability from phantom studies to lesion detectability in clinical practice. J Nucl Med. 2019;60(Suppl 1):478. Chin BB, Silosky M, Morgan R, Karki R, Anderson J. 68Ga DOTATATE organ specific tumor signal to noise (S/N) ratios: comparison of lesion detectability from phantom studies to lesion detectability in clinical practice. J Nucl Med. 2019;60(Suppl 1):478.
25.
go back to reference Groendahl AR, SkjeiKnudtsen I, Huynh BN, Mulstad M, Moe YM, Knuth F, et al. A comparison of methods for fully automatic segmentation of tumors and involved nodes in PET/CT of head and neck cancers. Phys Med Biol. 2021;66(6):065012.CrossRef Groendahl AR, SkjeiKnudtsen I, Huynh BN, Mulstad M, Moe YM, Knuth F, et al. A comparison of methods for fully automatic segmentation of tumors and involved nodes in PET/CT of head and neck cancers. Phys Med Biol. 2021;66(6):065012.CrossRef
26.
go back to reference Anderson J, Silosky M, Karki R, Morgan R, Chin BB. Normal biodistribution and tumor uptake of 68Ga DOTATATE PET / CT in the clinical setting: normal background activity, and organ specific tumor characterization of metastatic lesions. J Nucl Med. 2019;60(Suppl 1):3031. Anderson J, Silosky M, Karki R, Morgan R, Chin BB. Normal biodistribution and tumor uptake of 68Ga DOTATATE PET / CT in the clinical setting: normal background activity, and organ specific tumor characterization of metastatic lesions. J Nucl Med. 2019;60(Suppl 1):3031.
27.
go back to reference Chin BB, Green ED, Turkington TG, Hawk TC, Coleman RE. Increasing uptake time in FDG-PET: standardized uptake values in normal tissues at 1 versus 3 h. Mol Imaging Biol. 2009;11(2):118–22.CrossRef Chin BB, Green ED, Turkington TG, Hawk TC, Coleman RE. Increasing uptake time in FDG-PET: standardized uptake values in normal tissues at 1 versus 3 h. Mol Imaging Biol. 2009;11(2):118–22.CrossRef
28.
go back to reference Silosky MS, Karki R, Morgan R, Anderson J, Chin BB. Physical characteristics of (68)Ga DOTATATE PET/CT affecting small lesion detectability. Am J Nucl Med Mol Imaging. 2021;11(1):27–39.PubMedPubMedCentral Silosky MS, Karki R, Morgan R, Anderson J, Chin BB. Physical characteristics of (68)Ga DOTATATE PET/CT affecting small lesion detectability. Am J Nucl Med Mol Imaging. 2021;11(1):27–39.PubMedPubMedCentral
29.
go back to reference Silosky M, Karki R, Chin BB. 68Ga and 18F quantification, and detectability of hot spots using an ACR Phantom: contributions of radionuclide physical differences to hot spot detectability. J Nucl Med. 2019;60(Suppl 1):1200. Silosky M, Karki R, Chin BB. 68Ga and 18F quantification, and detectability of hot spots using an ACR Phantom: contributions of radionuclide physical differences to hot spot detectability. J Nucl Med. 2019;60(Suppl 1):1200.
30.
go back to reference Beauregard JM, Hofman MS, Kong G, Hicks RJ. The tumour sink effect on the biodistribution of 68Ga-DOTA-octreotate: implications for peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging. 2012;39(1):50–6.CrossRef Beauregard JM, Hofman MS, Kong G, Hicks RJ. The tumour sink effect on the biodistribution of 68Ga-DOTA-octreotate: implications for peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging. 2012;39(1):50–6.CrossRef
Metadata
Title
Automated liver lesion detection in 68Ga DOTATATE PET/CT using a deep fully convolutional neural network
Authors
Jonathan Wehrend
Michael Silosky
Fuyong Xing
Bennett B. Chin
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2021
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-021-00839-x

Other articles of this Issue 1/2021

EJNMMI Research 1/2021 Go to the issue