Skip to main content
Top
Published in: Journal of Digital Imaging 4/2020

Open Access 01-08-2020 | Lymphoma | Original Paper

Tumor Segmentation and Feature Extraction from Whole-Body FDG-PET/CT Using Cascaded 2D and 3D Convolutional Neural Networks

Authors: Skander Jemaa, Jill Fredrickson, Richard A. D. Carano, Tina Nielsen, Alex de Crespigny, Thomas Bengtsson

Published in: Journal of Imaging Informatics in Medicine | Issue 4/2020

Login to get access

Abstract

18F-Fluorodeoxyglucose-positron emission tomography (FDG-PET) is commonly used in clinical practice and clinical drug development to identify and quantify metabolically active tumors. Manual or computer-assisted tumor segmentation in FDG-PET images is a common way to assess tumor burden, such approaches are both labor intensive and may suffer from high inter-reader variability. We propose an end-to-end method leveraging 2D and 3D convolutional neural networks to rapidly identify and segment tumors and to extract metabolic information in eyes to thighs (whole body) FDG-PET/CT scans. The developed architecture is computationally efficient and devised to accommodate the size of whole-body scans, the extreme imbalance between tumor burden and the volume of healthy tissue, and the heterogeneous nature of the input images. Our dataset consists of a total of 3664 eyes to thighs FDG-PET/CT scans, from multi-site clinical trials in patients with non-Hodgkin’s lymphoma (NHL) and advanced non-small cell lung cancer (NSCLC). Tumors were segmented and reviewed by board-certified radiologists. We report a mean 3D Dice score of 88.6% on an NHL hold-out set of 1124 scans and a 93% sensitivity on 274 NSCLC hold-out scans. The method is a potential tool for radiologists to rapidly assess eyes to thighs FDG-avid tumor burden.
Literature
1.
go back to reference Kello G et al: Progress and Promise of FDG-PET Imaging for Cancer Patient Management and Oncologic Drug Development. Clin Cancer Res 2005;11(8):2785–2808 Kello G et al: Progress and Promise of FDG-PET Imaging for Cancer Patient Management and Oncologic Drug Development. Clin Cancer Res 2005;11(8):2785–2808
3.
go back to reference Chen HHW, Chiu N-T, et al: Prognostic Value of Whole-Body Total Lesion Glycolysis at Pretreatment FDG PET/CT in Non-Small Cell Lung Cancer. Radiology 2012;264(2):559–566CrossRef Chen HHW, Chiu N-T, et al: Prognostic Value of Whole-Body Total Lesion Glycolysis at Pretreatment FDG PET/CT in Non-Small Cell Lung Cancer. Radiology 2012;264(2):559–566CrossRef
4.
go back to reference Young H, et al: Measurement of clinical and subclinical tumor response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. Eur J Cancer 1999;35(13):1773–1782 Young H, et al: Measurement of clinical and subclinical tumor response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. Eur J Cancer 1999;35(13):1773–1782
5.
go back to reference Cheson B, et al: Revised Response Criteria for Malignant Lymphoma. J Clin Oncol 2007;25(5):579–586 Cheson B, et al: Revised Response Criteria for Malignant Lymphoma. J Clin Oncol 2007;25(5):579–586
6.
go back to reference Cheson B, et al: Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification. J Clin Oncol 2014;32(27):3059–3067CrossRef Cheson B, et al: Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification. J Clin Oncol 2014;32(27):3059–3067CrossRef
7.
go back to reference Long J, Shelhamer E, Darrell T: Fully convolutional networks for semantic segmentation,CVPR. IEEE Computer Society, 2015, pp 3431–3440 Long J, Shelhamer E, Darrell T: Fully convolutional networks for semantic segmentation,CVPR. IEEE Computer Society, 2015, pp 3431–3440
10.
go back to reference Kamnitsas K, et al: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation, Med Image Anal 2017;36:61–78CrossRef Kamnitsas K, et al: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation, Med Image Anal 2017;36:61–78CrossRef
14.
go back to reference Chollet F: Xception: Deep learning with depthwise separable convolutions. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 Chollet F: Xception: Deep learning with depthwise separable convolutions. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017
19.
go back to reference Vitolo U, Trněný M, Belada D, Burke JM, Carella AM, Chua N, Abrisqueta P, Demeter J, Flinn I, Hong X, Kim WS, Pinto A, Shi YK, Tatsumi Y, Oestergaard MZ, Wenger M, Fingerle-Rowson G, Catalani O, Nielsen T, Martelli M, Sehn LH. Obinutuzumab or Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone in Previously Untreated Diffuse Large B-Cell Lymphoma. J Clin Oncol 2017;35(31):3529–3537 Vitolo U, Trněný M, Belada D, Burke JM, Carella AM, Chua N, Abrisqueta P, Demeter J, Flinn I, Hong X, Kim WS, Pinto A, Shi YK, Tatsumi Y, Oestergaard MZ, Wenger M, Fingerle-Rowson G, Catalani O, Nielsen T, Martelli M, Sehn LH. Obinutuzumab or Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone in Previously Untreated Diffuse Large B-Cell Lymphoma. J Clin Oncol 2017;35(31):3529–3537
20.
go back to reference Marcus R, Davies A, Ando K, Klapper W, Opat S, Owen C, Phillips E, Sangha R, Schlag R, Seymour JF, Townsend W, Trněný M, Wenger M, Fingerle-Rowson G, Rufibach K, Moore T, Herold M, Hiddemann W. Obinutuzumab for the First-Line Treatment of Follicular Lymphoma. N Engl J Med 2017;377(14):1331–1344 Marcus R, Davies A, Ando K, Klapper W, Opat S, Owen C, Phillips E, Sangha R, Schlag R, Seymour JF, Townsend W, Trněný M, Wenger M, Fingerle-Rowson G, Rufibach K, Moore T, Herold M, Hiddemann W. Obinutuzumab for the First-Line Treatment of Follicular Lymphoma. N Engl J Med 2017;377(14):1331–1344
23.
go back to reference Teramoto A, Fujita H, Yamamuro O, TamakiT: Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique. Med Phys 2015;49(6):2821–2827. https://doi.org/10.1118/1.4711815 Teramoto A, Fujita H, Yamamuro O, TamakiT: Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique. Med Phys 2015;49(6):2821–2827. https://​doi.​org/​10.​1118/​1.​4711815
Metadata
Title
Tumor Segmentation and Feature Extraction from Whole-Body FDG-PET/CT Using Cascaded 2D and 3D Convolutional Neural Networks
Authors
Skander Jemaa
Jill Fredrickson
Richard A. D. Carano
Tina Nielsen
Alex de Crespigny
Thomas Bengtsson
Publication date
01-08-2020
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 4/2020
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-020-00341-1

Other articles of this Issue 4/2020

Journal of Digital Imaging 4/2020 Go to the issue