Skip to main content
Top
Published in: EJNMMI Research 1/2021

Open Access 01-12-2021 | Pathology | Short communication

Correlation of in vivo imaging to morphomolecular pathology in translational research: challenge accepted

Authors: Simone Ballke, Irina Heid, Carolin Mogler, Rickmer Braren, Markus Schwaiger, Wilko Weichert, Katja Steiger

Published in: EJNMMI Research | Issue 1/2021

Login to get access

Abstract

Correlation of in vivo imaging to histomorphological pathology in animal models requires comparative interdisciplinary expertise of different fields of medicine. From the morphological point of view, there is an urgent need to improve histopathological evaluation in animal model-based research to expedite translation into clinical applications. While different other fields of translational science were standardized over the last years, little was done to improve the pipeline of experimental pathology to ensure reproducibility based on pathological expertise in experimental animal models with respect to defined guidelines and classifications. Additionally, longitudinal analyses of preclinical models often use a variety of imaging methods and much more attention should be drawn to enable for proper co-registration of in vivo imaging methods with the ex vivo morphological read-outs. Here we present the development of the Comparative Experimental Pathology (CEP) unit embedded in the Institute of Pathology of the Technical University of Munich during the Collaborative Research Center 824 (CRC824) funding period together with selected approaches of histomorphological techniques for correlation of in vivo imaging to morphomolecular pathology.
Literature
1.
go back to reference Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer. 2017;17(12):751–65.CrossRef Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer. 2017;17(12):751–65.CrossRef
2.
go back to reference Galuschka C, Proynova R, Roth B, Augustin HG, Muller-Decker K. Models in translational oncology: a public resource database for preclinical cancer research. Cancer Res. 2017;77(10):2557–63.CrossRef Galuschka C, Proynova R, Roth B, Augustin HG, Muller-Decker K. Models in translational oncology: a public resource database for preclinical cancer research. Cancer Res. 2017;77(10):2557–63.CrossRef
3.
go back to reference Bock BC, Stein U, Schmitt CA, Augustin HG. Mouse models of human cancer. Cancer Res. 2014;74(17):4671–5.CrossRef Bock BC, Stein U, Schmitt CA, Augustin HG. Mouse models of human cancer. Cancer Res. 2014;74(17):4671–5.CrossRef
4.
go back to reference Ward JM, Schofield PN, Sundberg JP. Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail. Lab Anim (NY). 2017;46(4):146–51.CrossRef Ward JM, Schofield PN, Sundberg JP. Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail. Lab Anim (NY). 2017;46(4):146–51.CrossRef
5.
go back to reference Meyerholz DK, Adissu HA, Carvalho T, Atkins HM, Rissi DR, Beck AP, et al. Exclusion of expert contributors from authorship limits the quality of scientific articles. Vet Pathol. 2021;58(4):650–4.CrossRef Meyerholz DK, Adissu HA, Carvalho T, Atkins HM, Rissi DR, Beck AP, et al. Exclusion of expert contributors from authorship limits the quality of scientific articles. Vet Pathol. 2021;58(4):650–4.CrossRef
6.
go back to reference Steiger K. Möglichkeiten und Grenzen von Tiermodellen in der onkologischen Forschung aus Sicht der vergleichenden Pathologie. Munich: Technical University of Munich; 2019. Steiger K. Möglichkeiten und Grenzen von Tiermodellen in der onkologischen Forschung aus Sicht der vergleichenden Pathologie. Munich: Technical University of Munich; 2019.
7.
go back to reference The American Heritage medical dictionary. Boston: Houghton Mifflin Co.; 2008. viii, 599 p. p. The American Heritage medical dictionary. Boston: Houghton Mifflin Co.; 2008. viii, 599 p. p.
8.
go back to reference Segen JC. Concise dictionary of modern medicine. New York: McGraw-Hill; 2006. xix, 765 p. p. Segen JC. Concise dictionary of modern medicine. New York: McGraw-Hill; 2006. xix, 765 p. p.
10.
go back to reference Cardiff RD, Ward JM, Barthold SW. “One medicine—one pathology”: are veterinary and human pathology prepared? Lab Invest. 2008;88(1):18–26.CrossRef Cardiff RD, Ward JM, Barthold SW. “One medicine—one pathology”: are veterinary and human pathology prepared? Lab Invest. 2008;88(1):18–26.CrossRef
11.
go back to reference Morrison SJ. Time to do something about reproducibility. Elife. 2014;10(3):e03981. Morrison SJ. Time to do something about reproducibility. Elife. 2014;10(3):e03981.
12.
go back to reference Baker M. 1,500 scientists lift the lid on reproducibility. Nature. 2016;533(7604):452–4.CrossRef Baker M. 1,500 scientists lift the lid on reproducibility. Nature. 2016;533(7604):452–4.CrossRef
13.
go back to reference Collins FS, Tabak LA. Policy: NIH plans to enhance reproducibility. Nature. 2014;505(7485):612–3.CrossRef Collins FS, Tabak LA. Policy: NIH plans to enhance reproducibility. Nature. 2014;505(7485):612–3.CrossRef
14.
go back to reference Steiger K, Ballke S, Yen HY, Seelbach O, Alkhamas A, Boxberg M, et al. Histopathological research laboratories in translational research : conception and integration into the infrastructure of pathological institutes. Pathologe. 2019;40(2):172–8.CrossRef Steiger K, Ballke S, Yen HY, Seelbach O, Alkhamas A, Boxberg M, et al. Histopathological research laboratories in translational research : conception and integration into the infrastructure of pathological institutes. Pathologe. 2019;40(2):172–8.CrossRef
15.
go back to reference Gibson-Corley KN, Hochstedler C, Sturm M, Rogers J, Olivier AK, Meyerholz DK. Successful integration of the histology core laboratory in translational research. J Histotechnol. 2012;35(1):17–21.CrossRef Gibson-Corley KN, Hochstedler C, Sturm M, Rogers J, Olivier AK, Meyerholz DK. Successful integration of the histology core laboratory in translational research. J Histotechnol. 2012;35(1):17–21.CrossRef
17.
go back to reference Heid I, Steiger K, Trajkovic-Arsic M, Settles M, Esswein MR, Erkan M, et al. Co-clinical assessment of tumor cellularity in pancreatic cancer. Clin Cancer Res. 2017;23(6):1461–70.CrossRef Heid I, Steiger K, Trajkovic-Arsic M, Settles M, Esswein MR, Erkan M, et al. Co-clinical assessment of tumor cellularity in pancreatic cancer. Clin Cancer Res. 2017;23(6):1461–70.CrossRef
18.
go back to reference He H, Stylogiannis A, Afshari P, Wiedemann T, Steiger K, Buehler A, et al. Capsule optoacoustic endoscopy for esophageal imaging. J Biophotonics. 2019;12(10):e201800439.CrossRef He H, Stylogiannis A, Afshari P, Wiedemann T, Steiger K, Buehler A, et al. Capsule optoacoustic endoscopy for esophageal imaging. J Biophotonics. 2019;12(10):e201800439.CrossRef
19.
go back to reference Ruehl-Fehlert C, Kittel B, Morawietz G, Deslex P, Keenan C, Mahrt CR, et al. Revised guides for organ sampling and trimming in rats and mice–part 1. Exp Toxicol Pathol. 2003;55(2–3):91–106.CrossRef Ruehl-Fehlert C, Kittel B, Morawietz G, Deslex P, Keenan C, Mahrt CR, et al. Revised guides for organ sampling and trimming in rats and mice–part 1. Exp Toxicol Pathol. 2003;55(2–3):91–106.CrossRef
20.
go back to reference De Rose F, Braeuer M, Braesch-Andersen S, Otto AM, Steiger K, Reder S, et al. Galectin-3 targeting in thyroid orthotopic tumors opens new ways to characterize thyroid cancer. J Nucl Med. 2019;60(6):770–6.CrossRef De Rose F, Braeuer M, Braesch-Andersen S, Otto AM, Steiger K, Reder S, et al. Galectin-3 targeting in thyroid orthotopic tumors opens new ways to characterize thyroid cancer. J Nucl Med. 2019;60(6):770–6.CrossRef
21.
go back to reference Ward JM, Rehg JE, Morse HC 3rd. Differentiation of rodent immune and hematopoietic system reactive lesions from neoplasias. Toxicol Pathol. 2012;40(3):425–34.CrossRef Ward JM, Rehg JE, Morse HC 3rd. Differentiation of rodent immune and hematopoietic system reactive lesions from neoplasias. Toxicol Pathol. 2012;40(3):425–34.CrossRef
22.
go back to reference Bliemsrieder E, Kaissis G, Grashei M, Topping G, Altomonte J, Hundshammer C, et al. Hyperpolarized (13)C pyruvate magnetic resonance spectroscopy for in vivo metabolic phenotyping of rat HCC. Sci Rep. 2021;11(1):1191.CrossRef Bliemsrieder E, Kaissis G, Grashei M, Topping G, Altomonte J, Hundshammer C, et al. Hyperpolarized (13)C pyruvate magnetic resonance spectroscopy for in vivo metabolic phenotyping of rat HCC. Sci Rep. 2021;11(1):1191.CrossRef
23.
go back to reference Kaissis GA, Lohofer FK, Horl M, Heid I, Steiger K, Munoz-Alvarez KA, et al. Combined DCE-MRI- and FDG-PET enable histopathological grading prediction in a rat model of hepatocellular carcinoma. Eur J Radiol. 2020;124:108848.CrossRef Kaissis GA, Lohofer FK, Horl M, Heid I, Steiger K, Munoz-Alvarez KA, et al. Combined DCE-MRI- and FDG-PET enable histopathological grading prediction in a rat model of hepatocellular carcinoma. Eur J Radiol. 2020;124:108848.CrossRef
24.
go back to reference Gross C, Steiger K, Sayyed S, Heid I, Feuchtinger A, Walch A, et al. Model matters: differences in orthotopic rat hepatocellular carcinoma physiology determine therapy response to sorafenib. Clin Cancer Res. 2015;21(19):4440–50.CrossRef Gross C, Steiger K, Sayyed S, Heid I, Feuchtinger A, Walch A, et al. Model matters: differences in orthotopic rat hepatocellular carcinoma physiology determine therapy response to sorafenib. Clin Cancer Res. 2015;21(19):4440–50.CrossRef
25.
go back to reference Jungmann F, Kaissis GA, Ziegelmayer S, Harder F, Schilling C, Yen HY, et al. Prediction of tumor cellularity in resectable PDAC from preoperative computed tomography imaging. Cancers (Basel). 2021;13(9):2069. Jungmann F, Kaissis GA, Ziegelmayer S, Harder F, Schilling C, Yen HY, et al. Prediction of tumor cellularity in resectable PDAC from preoperative computed tomography imaging. Cancers (Basel). 2021;13(9):2069.
26.
go back to reference Becker K, Jahrling N, Saghafi S, Dodt HU. Ultramicroscopy: light-sheet-based microscopy for imaging centimeter-sized objects with micrometer resolution. Cold Spring Harb Protoc. 2013;2013(8):704–13.PubMed Becker K, Jahrling N, Saghafi S, Dodt HU. Ultramicroscopy: light-sheet-based microscopy for imaging centimeter-sized objects with micrometer resolution. Cold Spring Harb Protoc. 2013;2013(8):704–13.PubMed
27.
go back to reference Molbay M, Kolabas ZI, Todorov MI, Ohn TL, Erturk A. A guidebook for DISCO tissue clearing. Mol Syst Biol. 2021;17(3):e9807.CrossRef Molbay M, Kolabas ZI, Todorov MI, Ohn TL, Erturk A. A guidebook for DISCO tissue clearing. Mol Syst Biol. 2021;17(3):e9807.CrossRef
28.
go back to reference Orlich M, Kiefer F. A qualitative comparison of ten tissue clearing techniques. Histol Histopathol. 2018;33(2):181–99.PubMed Orlich M, Kiefer F. A qualitative comparison of ten tissue clearing techniques. Histol Histopathol. 2018;33(2):181–99.PubMed
29.
go back to reference Erturk A, Becker K, Jahrling N, Mauch CP, Hojer CD, Egen JG, et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc. 2012;7(11):1983–95.CrossRef Erturk A, Becker K, Jahrling N, Mauch CP, Hojer CD, Egen JG, et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc. 2012;7(11):1983–95.CrossRef
30.
go back to reference Sabdyusheva Litschauer I, Becker K, Saghafi S, Ballke S, Bollwein C, Foroughipour M, et al. 3D histopathology of human tumours by fast clearing and ultramicroscopy. Sci Rep. 2020;10(1):17619.CrossRef Sabdyusheva Litschauer I, Becker K, Saghafi S, Ballke S, Bollwein C, Foroughipour M, et al. 3D histopathology of human tumours by fast clearing and ultramicroscopy. Sci Rep. 2020;10(1):17619.CrossRef
31.
go back to reference Mohr H, Ballke S, Bechmann N, Gulde S, Malekzadeh-Najafabadi J, Peitzsch M, et al. Mutation of the cell cycle regulator p27kip1 drives pseudohypoxic pheochromocytoma development. Cancers (Basel). 2021;13(1):126. Mohr H, Ballke S, Bechmann N, Gulde S, Malekzadeh-Najafabadi J, Peitzsch M, et al. Mutation of the cell cycle regulator p27kip1 drives pseudohypoxic pheochromocytoma development. Cancers (Basel). 2021;13(1):126.
32.
go back to reference Cardiff RD, Miller CH, Munn RJ. Analysis of mouse model pathology: a primer for studying the anatomic pathology of genetically engineered mice. Cold Spring Harb Protoc. 2014;2014(6):561–80.PubMed Cardiff RD, Miller CH, Munn RJ. Analysis of mouse model pathology: a primer for studying the anatomic pathology of genetically engineered mice. Cold Spring Harb Protoc. 2014;2014(6):561–80.PubMed
Metadata
Title
Correlation of in vivo imaging to morphomolecular pathology in translational research: challenge accepted
Authors
Simone Ballke
Irina Heid
Carolin Mogler
Rickmer Braren
Markus Schwaiger
Wilko Weichert
Katja Steiger
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Keyword
Pathology
Published in
EJNMMI Research / Issue 1/2021
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-021-00826-2

Other articles of this Issue 1/2021

EJNMMI Research 1/2021 Go to the issue