Skip to main content
Top
Published in: EJNMMI Research 1/2021

Open Access 01-12-2021 | Positron Emission Tomography | Original research

Comparison of 6-[18F]FDOPA PET with Nigrosome 1 detection in patients with parkinsonism

Authors: Enrico Michler, Daniel Kaiser, Kiriaki Eleftheriadou, Björn Falkenburger, Jörg Kotzerke, Sebastian Hoberück

Published in: EJNMMI Research | Issue 1/2021

Login to get access

Abstract

Background

The functional 6-[18F]FDOPA positron emission tomography (PET) can be a helpful tool in differentiating parkinsonism with dopaminergic deficiency from clinically similar differential diagnoses. Furthermore, in T2*/susceptibility-weighted imaging (SWI) magnetic resonance imaging (MRI) sequences the structural integrity of the Nigrosome 1 (N1) can be assessed by checking the presence of the swallow tail sign (STS). We therefore retrospectively compared the performance of the 6-[18F]FDOPA PET with the N1 detection in patients suspected with parkinsonian diseases. Forty-three consecutive patients (m: 23, f: 20, mean age: 63 ± 12 years) were included in the study. They underwent clinically indicated 6-[18F]FDOPA PET/MRI scans as part of their neurological evaluation of uncertain parkinsonian syndromes. Visual and semi-quantitative PET imaging results were statistically compared with visual N1 assessment on 3 T SWI. As the gold standard, we defined the clinical diagnosis at the last follow-up, which included idiopathic Parkinson syndrome (IPS; n = 18), atypical parkinsonian syndromes (APS; n = 9) and other neurological diseases without dopaminergic deficit (n = 16).

Results

Thirty-five of 43 patients (81%, Kappa 0.611) had corresponding results in 6-[18F]FDOPA PET and SWI. Seven of the remaining 8 patients were correctly diagnosed by 6-[18F]FDOPA PET alone. Sensitivity, specificity and accuracy for 6-[18F]FDOPA and N1 imaging were 93%, 94%, 93% and 82%, 75%, 79%, respectively.

Conclusions

6-[18F]FDOPA PET and Nigrosome 1 evaluation had an overall good intermodality agreement. Diagnostic agreement was very good in cases of clinically suspected idiopathic Parkinson syndrome and fair in atypical parkinsonian syndromes, but poor in patients with non-parkinsonian disorders. 6-[18F]FDOPA PET showed higher sensitivity, specificity and accuracy in discriminating parkinsonian syndromes from non-parkinsonian disorders than the N1 evaluation. In summary, the additional benefit of N1 assessment in patients with APS or parkinsonism without dopaminergic deficit needs to be proven by prospective studies.
Literature
1.
go back to reference Perlmutter JS, Norris SA. Neuroimaging biomarkers for Parkinson disease: facts and fantasy. Ann Neurol. 2014;76:769–83.CrossRef Perlmutter JS, Norris SA. Neuroimaging biomarkers for Parkinson disease: facts and fantasy. Ann Neurol. 2014;76:769–83.CrossRef
2.
go back to reference Maiti B, Perlmutter JS. PET imaging in movement disorders. Semin Nucl Med. 2018;48:513–24.CrossRef Maiti B, Perlmutter JS. PET imaging in movement disorders. Semin Nucl Med. 2018;48:513–24.CrossRef
3.
go back to reference Brooks DJ. Imaging approaches to Parkinson disease. J Nucl Med. 2010;51:596–609.CrossRef Brooks DJ. Imaging approaches to Parkinson disease. J Nucl Med. 2010;51:596–609.CrossRef
4.
go back to reference Darcourt J, Schiazza A, Sapin N, Dufour M, Ouvrier MJ, Benisvy D, et al. 18F-FDOPA PET for the diagnosis of parkinsonian syndromes. Q J Nucl Med Mol Imaging. 2014;58:355–65.PubMed Darcourt J, Schiazza A, Sapin N, Dufour M, Ouvrier MJ, Benisvy D, et al. 18F-FDOPA PET for the diagnosis of parkinsonian syndromes. Q J Nucl Med Mol Imaging. 2014;58:355–65.PubMed
5.
go back to reference Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain: I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain. 1999;122:1421–36.CrossRef Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain: I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain. 1999;122:1421–36.CrossRef
6.
go back to reference Cheng Z, He N, Huang P, Li Y, Tang R, Sethi SK, et al. Imaging the Nigrosome 1 in the substantia nigra using susceptibility weighted imaging and quantitative susceptibility mapping: an application to Parkinson’s disease. NeuroImage Clin. 2020;25:102103.CrossRef Cheng Z, He N, Huang P, Li Y, Tang R, Sethi SK, et al. Imaging the Nigrosome 1 in the substantia nigra using susceptibility weighted imaging and quantitative susceptibility mapping: an application to Parkinson’s disease. NeuroImage Clin. 2020;25:102103.CrossRef
7.
go back to reference Schwarz ST, Afzal M, Morgan PS, Bajaj N, Gowland PA, Auer DP. The “swallow tail” appearance of the healthy nigrosome—a new accurate test of Parkinson’s disease: a case-control and retrospective cross-sectional MRI study at 3T. PLoS ONE. 2014;9:e93814.CrossRef Schwarz ST, Afzal M, Morgan PS, Bajaj N, Gowland PA, Auer DP. The “swallow tail” appearance of the healthy nigrosome—a new accurate test of Parkinson’s disease: a case-control and retrospective cross-sectional MRI study at 3T. PLoS ONE. 2014;9:e93814.CrossRef
8.
go back to reference Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30:1591–601.CrossRef Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30:1591–601.CrossRef
9.
go back to reference Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71:670–6.CrossRef Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71:670–6.CrossRef
10.
go back to reference Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord. 2017;32:853–64.CrossRef Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord. 2017;32:853–64.CrossRef
11.
go back to reference Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013;80:496–503.CrossRef Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013;80:496–503.CrossRef
12.
go back to reference Bhatia KP, Bain P, Bajaj N, Elble RJ, Hallett M, Louis ED, et al. Consensus Statement on the classification of tremors from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord. 2018;33:75–87.CrossRef Bhatia KP, Bain P, Bajaj N, Elble RJ, Hallett M, Louis ED, et al. Consensus Statement on the classification of tremors from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord. 2018;33:75–87.CrossRef
13.
go back to reference Allen RP, Picchietti DL, Garcia-Borreguero D, Ondo WG, Walters AS, Winkelman JW, et al. Restless legs syndrome/Willis–Ekbom disease diagnostic criteria: Updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria—history, rationale, description, and significance. Sleep Med. 2014;15:860–73.CrossRef Allen RP, Picchietti DL, Garcia-Borreguero D, Ondo WG, Walters AS, Winkelman JW, et al. Restless legs syndrome/Willis–Ekbom disease diagnostic criteria: Updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria—history, rationale, description, and significance. Sleep Med. 2014;15:860–73.CrossRef
14.
go back to reference Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.CrossRef Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.CrossRef
15.
go back to reference Reilmann R, Leavitt BR, Ross CA. Diagnostic criteria for Huntington’s disease based on natural history. Mov Disord. 2014;29:1335–41.CrossRef Reilmann R, Leavitt BR, Ross CA. Diagnostic criteria for Huntington’s disease based on natural history. Mov Disord. 2014;29:1335–41.CrossRef
16.
go back to reference Füchtner F, Zessin J, Mäding P, Wüst F. Aspects of 6-[18F]fluoro-L-DOPA preparation. Deuterochloroform as a substitute solvent for Freon 11. Nuklearmedizin. 2008;47:62–4.CrossRef Füchtner F, Zessin J, Mäding P, Wüst F. Aspects of 6-[18F]fluoro-L-DOPA preparation. Deuterochloroform as a substitute solvent for Freon 11. Nuklearmedizin. 2008;47:62–4.CrossRef
17.
go back to reference Oehme L, Perick M, Beuthien-Baumann B, Wolz M, Storch A, Löhle M, et al. Comparison of dopamine turnover, dopamine influx constant and activity ratio of striatum and occipital brain with 18F-dopa brain PET in normal controls and patients with Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2011;38:1550–9.CrossRef Oehme L, Perick M, Beuthien-Baumann B, Wolz M, Storch A, Löhle M, et al. Comparison of dopamine turnover, dopamine influx constant and activity ratio of striatum and occipital brain with 18F-dopa brain PET in normal controls and patients with Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2011;38:1550–9.CrossRef
18.
go back to reference Fleiss JL. Statistical methods for rates and proportions. 3rd ed. Hoboken: Wiley; 1981. Fleiss JL. Statistical methods for rates and proportions. 3rd ed. Hoboken: Wiley; 1981.
19.
go back to reference Ibrahim N, Kusmirek J, Struck AF, Floberg JM, Perlman SB, Gallagher C, et al. The sensitivity and specificity of F-DOPA PET in a movement disorder clinic. Am J Nucl Med Mol Imaging. 2016;6:102–9.PubMedPubMedCentral Ibrahim N, Kusmirek J, Struck AF, Floberg JM, Perlman SB, Gallagher C, et al. The sensitivity and specificity of F-DOPA PET in a movement disorder clinic. Am J Nucl Med Mol Imaging. 2016;6:102–9.PubMedPubMedCentral
20.
go back to reference Eshuis SA, Maguire RP, Leenders KL, Jonkman S, Jager PL. Comparison of FP-CIT SPECT with F-DOPA PET in patients with de novo and advanced Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2006;33:200–9.CrossRef Eshuis SA, Maguire RP, Leenders KL, Jonkman S, Jager PL. Comparison of FP-CIT SPECT with F-DOPA PET in patients with de novo and advanced Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2006;33:200–9.CrossRef
21.
go back to reference Burn DJ, Sawle GV, Brooks DJ. Differential diagnosis of Parkinson’s disease, multiple system atrophy, and Steele–Richardson–Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psychiatry. 1994;57:278–84.CrossRef Burn DJ, Sawle GV, Brooks DJ. Differential diagnosis of Parkinson’s disease, multiple system atrophy, and Steele–Richardson–Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psychiatry. 1994;57:278–84.CrossRef
22.
go back to reference Bajaj A, Driver JA, Schernhammer ES. Parkinson’s disease and cancer risk: a systematic review and meta-analysis. Cancer Causes Control. 2010;21:697–707.CrossRef Bajaj A, Driver JA, Schernhammer ES. Parkinson’s disease and cancer risk: a systematic review and meta-analysis. Cancer Causes Control. 2010;21:697–707.CrossRef
23.
go back to reference Blazejewska AI, Schwarz ST, Pitiot A, Stephenson MC, Lowe J, Bajaj N, et al. Visualization of nigrosome 1 and its loss in PD. Neurology. 2013;81:534–40.CrossRef Blazejewska AI, Schwarz ST, Pitiot A, Stephenson MC, Lowe J, Bajaj N, et al. Visualization of nigrosome 1 and its loss in PD. Neurology. 2013;81:534–40.CrossRef
24.
go back to reference Chau MT, Todd G, Wilcox R, Agzarian M, Bezak E. Diagnostic accuracy of the appearance of Nigrosome-1 on magnetic resonance imaging in Parkinson’s disease: a systematic review and meta-analysis. Park Relat Disord. 2020;78:12–20.CrossRef Chau MT, Todd G, Wilcox R, Agzarian M, Bezak E. Diagnostic accuracy of the appearance of Nigrosome-1 on magnetic resonance imaging in Parkinson’s disease: a systematic review and meta-analysis. Park Relat Disord. 2020;78:12–20.CrossRef
25.
go back to reference Perez Akly MS, Stefani CV, Ciancaglini L, Bestoso JS, Funes JA, Bauso DJ, et al. Accuracy of nigrosome-1 detection to discriminate patients with Parkinson’s disease and essential tremor. Neuroradiol J. 2019;32:395–400.CrossRef Perez Akly MS, Stefani CV, Ciancaglini L, Bestoso JS, Funes JA, Bauso DJ, et al. Accuracy of nigrosome-1 detection to discriminate patients with Parkinson’s disease and essential tremor. Neuroradiol J. 2019;32:395–400.CrossRef
26.
go back to reference Ito K, Morrish PK, Rakshi JS, Uema T, Ashburner J, Bailey DL, et al. Statistical parametric mapping with 18F-dopa PET shows bilaterally reduced striatal and nigral dopaminergic function in early Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1999;66:754–8.CrossRef Ito K, Morrish PK, Rakshi JS, Uema T, Ashburner J, Bailey DL, et al. Statistical parametric mapping with 18F-dopa PET shows bilaterally reduced striatal and nigral dopaminergic function in early Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1999;66:754–8.CrossRef
27.
go back to reference Otsuka M, Ichiya Y, Hosokawa S, Kuwabara Y, Tahara T, Fukumura T, et al. Striatal blood flow, glucose metabolism and 18F-Dopa uptake: difference in Parkinson’s disease and atypical Parkinsonism. J Neurol Neurosurg Psychiatry. 1991;54:898–904.CrossRef Otsuka M, Ichiya Y, Hosokawa S, Kuwabara Y, Tahara T, Fukumura T, et al. Striatal blood flow, glucose metabolism and 18F-Dopa uptake: difference in Parkinson’s disease and atypical Parkinsonism. J Neurol Neurosurg Psychiatry. 1991;54:898–904.CrossRef
28.
go back to reference Kim EY, Sung YH, Shin H-G, Noh Y, Nam Y, Lee J. Diagnosis of early-stage idiopathic Parkinson’s disease using high-resolution quantitative susceptibility mapping combined with histogram analysis in the substantia nigra at 3 T. J Clin Neurol. 2018;14:90.CrossRef Kim EY, Sung YH, Shin H-G, Noh Y, Nam Y, Lee J. Diagnosis of early-stage idiopathic Parkinson’s disease using high-resolution quantitative susceptibility mapping combined with histogram analysis in the substantia nigra at 3 T. J Clin Neurol. 2018;14:90.CrossRef
29.
go back to reference Stezin A, Naduthota RM, Botta R, Varadharajan S, Lenka A, Saini J, et al. Clinical utility of visualisation of nigrosome-1 in patients with Parkinson’s disease. Eur Radiol. 2018;28:718–26.CrossRef Stezin A, Naduthota RM, Botta R, Varadharajan S, Lenka A, Saini J, et al. Clinical utility of visualisation of nigrosome-1 in patients with Parkinson’s disease. Eur Radiol. 2018;28:718–26.CrossRef
31.
go back to reference Reiter E, Mueller C, Pinter B, Krismer F, Scherfler C, Esterhammer R, et al. Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative Parkinsonism. Mov Disord. 2015;30:1068–76.CrossRef Reiter E, Mueller C, Pinter B, Krismer F, Scherfler C, Esterhammer R, et al. Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative Parkinsonism. Mov Disord. 2015;30:1068–76.CrossRef
32.
go back to reference Meijer FJA, Steens SC, Van RA, Van Walsum AMVC, Küsters B, Esselink RAJ, et al. Nigrosome-1 on susceptibility weighted imaging to differentiate parkinson’s disease from atypical parkinsonism: an in vivo and ex vivo pilot study. Pol J Radiol. 2016;81:363–9.CrossRef Meijer FJA, Steens SC, Van RA, Van Walsum AMVC, Küsters B, Esselink RAJ, et al. Nigrosome-1 on susceptibility weighted imaging to differentiate parkinson’s disease from atypical parkinsonism: an in vivo and ex vivo pilot study. Pol J Radiol. 2016;81:363–9.CrossRef
33.
go back to reference Calloni SF, Conte G, Sbaraini S, Cilia R, Contarino VE, Avignone S, et al. Multiparametric MR imaging of Parkinsonisms at 3 tesla: its role in the differentiation of idiopathic Parkinson’s disease versus atypical Parkinsonian disorders. Eur J Radiol. 2018;109:95–100.CrossRef Calloni SF, Conte G, Sbaraini S, Cilia R, Contarino VE, Avignone S, et al. Multiparametric MR imaging of Parkinsonisms at 3 tesla: its role in the differentiation of idiopathic Parkinson’s disease versus atypical Parkinsonian disorders. Eur J Radiol. 2018;109:95–100.CrossRef
34.
go back to reference Adler CH, Beach TG, Hentz JG, Shill HA, Caviness JN, Driver-Dunckley E, et al. Low clinical diagnostic accuracy of early vs advanced Parkinson disease: clinicopathologic study. Neurology. 2014;83:406–12.CrossRef Adler CH, Beach TG, Hentz JG, Shill HA, Caviness JN, Driver-Dunckley E, et al. Low clinical diagnostic accuracy of early vs advanced Parkinson disease: clinicopathologic study. Neurology. 2014;83:406–12.CrossRef
35.
go back to reference Burke RE, O’Malley K. Axon degeneration in Parkinson’s disease. Exp Neurol. 2013;246:72.CrossRef Burke RE, O’Malley K. Axon degeneration in Parkinson’s disease. Exp Neurol. 2013;246:72.CrossRef
Metadata
Title
Comparison of 6-[18F]FDOPA PET with Nigrosome 1 detection in patients with parkinsonism
Authors
Enrico Michler
Daniel Kaiser
Kiriaki Eleftheriadou
Björn Falkenburger
Jörg Kotzerke
Sebastian Hoberück
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2021
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-021-00758-x

Other articles of this Issue 1/2021

EJNMMI Research 1/2021 Go to the issue