Skip to main content
Top
Published in: EJNMMI Research 1/2020

01-12-2020 | Positron Emission Tomography | Original research

PET quantification of brain O-GlcNAcase with [18F]LSN3316612 in healthy human volunteers

Authors: Jae-Hoon Lee, Jeih-San Liow, Soumen Paul, Cheryl L. Morse, Mohammad B. Haskali, Lester Manly, Sergey Shcherbinin, J. Craig Ruble, Nancy Kant, Emily C. Collins, Hugh N. Nuthall, Paolo Zanotti-Fregonara, Sami S. Zoghbi, Victor W. Pike, Robert B. Innis

Published in: EJNMMI Research | Issue 1/2020

Login to get access

Abstract

Background

Previous studies found that [18F]LSN3316612 was a promising positron emission tomography (PET) radioligand for imaging O-GlcNAcase in nonhuman primates and human volunteers. This study sought to further evaluate the suitability of [18F]LSN3316612 for human clinical research.

Methods

Kinetic evaluation of [18F]LSN3316612 was conducted in a combined set of baseline brain scans from 17 healthy human volunteers and test-retest imaging was conducted in 10 of these volunteers; another 6 volunteers had whole-body scans to measure radiation exposure to body organs. Total distribution volume (VT) estimates were compared for the one- and two-tissue compartment models with the arterial input function. Test-retest variability and reliability were evaluated via mean difference and intraclass correlation coefficient (ICC). The time stability of VT was assessed down to a 30-min scan time. An alternative quantification method for [18F]LSN3316612 binding without blood was also investigated to assess the possibility of eliminating arterial sampling.

Results

Brain uptake was generally high and could be quantified as VT with excellent identifiability using the two-tissue compartment model. [18F]LSN3316612 exhibited good absolute test-retest variability (12.5%), but the arithmetic test-retest variability was far from 0 (11.3%), reflecting a near-uniform increase of VT on the retest scan in nine of 10 volunteers. VT values were stable after 110 min in all brain regions, suggesting that no radiometabolites accumulated in the brain. Measurements obtained using only brain activity (i.e., area under the curve (AUC) from 150–180 min) correlated strongly with regional VT values during test-retest conditions (R2 = 0.84), exhibiting similar reliability to VT (ICC = 0.68 vs. 0.64). Estimated radiation exposure for [18F]LSN3316612 PET was 20.5 ± 2.1 μSv/MBq, comparable to other 18F-labeled radioligands for brain imaging.

Conclusions

[18F]LSN3316612 is an excellent PET radioligand for imaging O-GlcNAcase in the human brain. Alternative quantification without blood is possible, at least for within-subject repeat studies. However, the unexplained increase of VT under retest conditions requires further investigation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem. 1984;259(5):3308–17.PubMed Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem. 1984;259(5):3308–17.PubMed
2.
go back to reference Kreppel LK, Hart GW. Regulation of a cytosolic and nuclear O-GlcNAc transferase Role of the tetratricopeptide repeats. J Biol Chem. 1999;274(45):32015–22.CrossRef Kreppel LK, Hart GW. Regulation of a cytosolic and nuclear O-GlcNAc transferase Role of the tetratricopeptide repeats. J Biol Chem. 1999;274(45):32015–22.CrossRef
3.
go back to reference Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2004;101(29):10804–9.CrossRef Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2004;101(29):10804–9.CrossRef
4.
go back to reference Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, et al. Accumulation of abnormally phosphorylated τ precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res. 1989;477(1):90–9.CrossRef Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, et al. Accumulation of abnormally phosphorylated τ precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res. 1989;477(1):90–9.CrossRef
5.
go back to reference Yuzwa SA, Cheung AH, Okon M, McIntosh LP, Vocadlo DJ. O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers. J Mol Biol. 2014;426(8):1736–52.CrossRef Yuzwa SA, Cheung AH, Okon M, McIntosh LP, Vocadlo DJ. O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers. J Mol Biol. 2014;426(8):1736–52.CrossRef
6.
go back to reference Gong CX, Liu F, Iqbal K. O-GlcNAcylation: a regulator of tau pathology and neurodegeneration. Alzheimers Dement. 2016;12(10):1078–89.CrossRef Gong CX, Liu F, Iqbal K. O-GlcNAcylation: a regulator of tau pathology and neurodegeneration. Alzheimers Dement. 2016;12(10):1078–89.CrossRef
7.
go back to reference Gong CX, Tanimukai H, Grundke-Iqbal I, Iqbal K, Liu F, Shi J, et al. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain. 2009;132(7):1820–32.CrossRef Gong CX, Tanimukai H, Grundke-Iqbal I, Iqbal K, Liu F, Shi J, et al. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain. 2009;132(7):1820–32.CrossRef
8.
go back to reference Borghgraef P, Menuet C, Theunis C, Louis JV, Devijver H, Maurin H, et al. Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301L mice. PLoS One. 2013;8(12):e84442.CrossRef Borghgraef P, Menuet C, Theunis C, Louis JV, Devijver H, Maurin H, et al. Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301L mice. PLoS One. 2013;8(12):e84442.CrossRef
9.
go back to reference Kim C, Nam DW, Park SY, Song H, Hong HS, Boo JH, et al. O-linked β-N-acetylglucosaminidase inhibitor attenuates β-amyloid plaque and rescues memory impairment. Neurobiol Aging. 2013;34(1):275–85.CrossRef Kim C, Nam DW, Park SY, Song H, Hong HS, Boo JH, et al. O-linked β-N-acetylglucosaminidase inhibitor attenuates β-amyloid plaque and rescues memory impairment. Neurobiol Aging. 2013;34(1):275–85.CrossRef
10.
go back to reference Yuzwa SA, Shan X, Macauley MS, Clark T, Skorobogatko Y, Vosseller K, et al. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol. 2012;8(4):393–9.CrossRef Yuzwa SA, Shan X, Macauley MS, Clark T, Skorobogatko Y, Vosseller K, et al. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol. 2012;8(4):393–9.CrossRef
11.
go back to reference Sandhu P, Lee J, Ballard J, Walker B, Ellis J, Marcus J, et al. Pharmacokinetics and Pharmacodynamics to Support Clinical Studies of MK-8719: An O-GlcNACase Inhibitor for Progressive Supranuclear Palsy. Alzheimers Dement. 2016;12(7):P1028.CrossRef Sandhu P, Lee J, Ballard J, Walker B, Ellis J, Marcus J, et al. Pharmacokinetics and Pharmacodynamics to Support Clinical Studies of MK-8719: An O-GlcNACase Inhibitor for Progressive Supranuclear Palsy. Alzheimers Dement. 2016;12(7):P1028.CrossRef
12.
go back to reference Ryan JM, Quattropani A, Abd-Elaziz K, Daas ID, Schneider M, Ousson S, et al. Phase 1 study in healthy volunteers of the O-GlcNA case inhibitor ASN120290 as a novel therapy for progressive supranuclear palsy and related tauopathies. Alzheimers Dement. 2018;14(7):P251.CrossRef Ryan JM, Quattropani A, Abd-Elaziz K, Daas ID, Schneider M, Ousson S, et al. Phase 1 study in healthy volunteers of the O-GlcNA case inhibitor ASN120290 as a novel therapy for progressive supranuclear palsy and related tauopathies. Alzheimers Dement. 2018;14(7):P251.CrossRef
13.
go back to reference Paul S, Haskali MB, Liow JS, Zoghbi SS, Barth VN, Kolodrubetz MC, et al. Evaluation of a PET radioligand to image O-GlcNAcase in brain and periphery of rhesus monkey and knock-out mouse. J Nucl Med. 2019;60(1):129–34.CrossRef Paul S, Haskali MB, Liow JS, Zoghbi SS, Barth VN, Kolodrubetz MC, et al. Evaluation of a PET radioligand to image O-GlcNAcase in brain and periphery of rhesus monkey and knock-out mouse. J Nucl Med. 2019;60(1):129–34.CrossRef
14.
go back to reference Lu SY, Paul S, Haskali MB, Ruley KM, Dreyfus NJ-F, DuBois SL, et al. Preclinical and clinical evaluation of an O-GlcNAcase PET ligand. New London: presented at Gordon Research Conference on Medicinal Chemistry; 2019. Lu SY, Paul S, Haskali MB, Ruley KM, Dreyfus NJ-F, DuBois SL, et al. Preclinical and clinical evaluation of an O-GlcNAcase PET ligand. New London: presented at Gordon Research Conference on Medicinal Chemistry; 2019.
15.
go back to reference Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2003;19(4):224–47.CrossRef Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2003;19(4):224–47.CrossRef
16.
go back to reference Zoghbi SS, Shetty HU, Ichise M, Fujita M, Imaizumi M, Liow JS, et al. PET imaging of the dopamine transporter with 18F-FECNT: a polar radiometabolite confounds brain radioligand measurements. J Nucl Med. 2006;47(3):520–7.PubMed Zoghbi SS, Shetty HU, Ichise M, Fujita M, Imaizumi M, Liow JS, et al. PET imaging of the dopamine transporter with 18F-FECNT: a polar radiometabolite confounds brain radioligand measurements. J Nucl Med. 2006;47(3):520–7.PubMed
17.
go back to reference Gunn RN, Sargent PA, Bench CJ, Rabiner EA, Osman S, Pike VW, et al. Tracer kinetic modeling of the 5-HT1A receptor ligand [carbonyl-11C]WAY-100635 for PET. NeuroImage. 1998;8(4):426–40.CrossRef Gunn RN, Sargent PA, Bench CJ, Rabiner EA, Osman S, Pike VW, et al. Tracer kinetic modeling of the 5-HT1A receptor ligand [carbonyl-11C]WAY-100635 for PET. NeuroImage. 1998;8(4):426–40.CrossRef
18.
go back to reference Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8.CrossRef Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8.CrossRef
19.
go back to reference Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.CrossRef Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.CrossRef
20.
go back to reference Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values: ICRP Publication 89. Ann ICRP. 2002;32(3):1–277.CrossRef Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values: ICRP Publication 89. Ann ICRP. 2002;32(3):1–277.CrossRef
21.
go back to reference Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46(6):1023–7.PubMed Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46(6):1023–7.PubMed
22.
go back to reference Vennart J. Limits for intakes of radionuclides by workers: ICRP Publication 30. Health Phys. 1981;40(4):477–84.CrossRef Vennart J. Limits for intakes of radionuclides by workers: ICRP Publication 30. Health Phys. 1981;40(4):477–84.CrossRef
23.
go back to reference Zanotti-Fregonara P, Lammertsma AA, Innis RB. Suggested pathway to assess radiation safety of 18F-labeled PET tracers for first-in-human studies. Eur J Nucl Med Mol Imaging. 2013;40(11):1781–3.CrossRef Zanotti-Fregonara P, Lammertsma AA, Innis RB. Suggested pathway to assess radiation safety of 18F-labeled PET tracers for first-in-human studies. Eur J Nucl Med Mol Imaging. 2013;40(11):1781–3.CrossRef
24.
go back to reference Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.CrossRef Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.CrossRef
Metadata
Title
PET quantification of brain O-GlcNAcase with [18F]LSN3316612 in healthy human volunteers
Authors
Jae-Hoon Lee
Jeih-San Liow
Soumen Paul
Cheryl L. Morse
Mohammad B. Haskali
Lester Manly
Sergey Shcherbinin
J. Craig Ruble
Nancy Kant
Emily C. Collins
Hugh N. Nuthall
Paolo Zanotti-Fregonara
Sami S. Zoghbi
Victor W. Pike
Robert B. Innis
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2020
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-020-0616-4

Other articles of this Issue 1/2020

EJNMMI Research 1/2020 Go to the issue