Skip to main content
Top
Published in: EJNMMI Research 1/2020

Open Access 01-12-2020 | Original research

VEGF receptor targeted imaging of angiogenic response to limb ischemia in diabetic vs. non-diabetic Yucatan minipigs

Authors: Lynne L. Johnson, Jordan Johnson, Ziad Ali, Yared Tekabe, Rebecca Ober, Gail Geist, Alicia McLuckie, Aram Safarov, April Holland, Geping Zhang, Marina Backer, Joseph Backer

Published in: EJNMMI Research | Issue 1/2020

Login to get access

Abstract

Background

New therapies to treat diabetic peripheral artery disease (PAD) require target-specific non-invasive imaging modalities to follow efficacy. As a translational study, we performed targeted imaging of receptors for vascular endothelial growth factor (VEGF) in response to anterior femoral artery occlusion (FAO) in Yucatan minipigs and compare the normal response to response in diabetic Yucatan minipigs.

Methods

Eleven Yucatan minipigs, 6 non-diabetic (non-D) and 5 purpose bred diabetic (D) (Sinclair, Auxvasse MO), underwent intravascular total occlusion of the anterior femoral artery (FA). At days 1 and 28, pigs underwent SPECT/CT 201Tl hindlimb perfusion imaging and at day 7 were injected with [99mTc]DOTA-PEG-scVEGF (scV/Tc) tracer targeting VEGF receptor, and underwent biopsies of the hindlimb muscles for gamma counting and histology, followed by imaging. One day after the final scan, pigs underwent contrast angiography of the lower extremities. Counts from scans were converted to percentage injected activity (%IA).

Results

Perfusion was lower in the occluded hindlimb compared to non-occluded on day 1 in both the D and non-D pigs. At day 7, scV/Tc count ratio of counts from ROIs drawn in proximal gastrocnemius muscle for the occluded over non-occluded limb was significantly higher in non-D vs. D pigs (1.32 ± 0.06 vs. 1.04 ± 0.13, P = 0.02) reflecting higher level of angiogenesis. Perfusion increased between days 1 and 28 in the muscles in the occluded limb for the non-diabetic pigs while the diabetic pig showed no increase (+ 0.13 ± 0.08 %IA vs. − 0.13 ± 0.11, P = 0.003). The anterior FA showed poor contrast filling beyond occluder and qualitatively fewer bridging collaterals compared to non-D pigs at 28 days.

Conclusion

VEGF receptor targeted imaging showed the effects of diabetes to suppress angiogenesis in response to occlusion of the anterior femoral artery of purpose bred diabetic Yucatan minipigs and indicates potential applicability as a marker to follow efficacy of novel therapies to improve blood flow by stimulating angiogenesis in diabetic PAD.
Literature
1.
go back to reference Fowkes FG, Aboyans V, Fowkes FJ, McDermott MM, Sampson UK, Criqui MH. Peripheral artery disease: epidemiology and global perspectives. Nat Rev Cardiol. 2017;14(3):156–70.PubMedCrossRef Fowkes FG, Aboyans V, Fowkes FJ, McDermott MM, Sampson UK, Criqui MH. Peripheral artery disease: epidemiology and global perspectives. Nat Rev Cardiol. 2017;14(3):156–70.PubMedCrossRef
2.
go back to reference Eldrup N, Sillesen H, Prescott E, Nordestgaard BG. Ankle brachial index, C-reactive protein, and central augmentation index to identify individuals with severe atherosclerosis. Eur Heart J. 2006;27:316–22.PubMedCrossRef Eldrup N, Sillesen H, Prescott E, Nordestgaard BG. Ankle brachial index, C-reactive protein, and central augmentation index to identify individuals with severe atherosclerosis. Eur Heart J. 2006;27:316–22.PubMedCrossRef
3.
go back to reference Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141:421–31.PubMedCrossRef Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141:421–31.PubMedCrossRef
4.
go back to reference Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC Guideline on the management of patients with lower extremity peripheral artery disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2017;69:e71–e126.PubMedCrossRef Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC Guideline on the management of patients with lower extremity peripheral artery disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2017;69:e71–e126.PubMedCrossRef
5.
go back to reference Perez P, Esteban C, Sauquillo JC, Yeste M, Manzano L, Mujal A, et al. Cilostazol and outcome in outpatients with peripheral artery disease. Thrombosis Res. 2014;134:331–5.CrossRef Perez P, Esteban C, Sauquillo JC, Yeste M, Manzano L, Mujal A, et al. Cilostazol and outcome in outpatients with peripheral artery disease. Thrombosis Res. 2014;134:331–5.CrossRef
6.
go back to reference Shishehbor MH, Jaff MR. Percutaneous therapies for peripheral artery disease. Circulation. 2016;134:2008–27.PubMedCrossRef Shishehbor MH, Jaff MR. Percutaneous therapies for peripheral artery disease. Circulation. 2016;134:2008–27.PubMedCrossRef
7.
go back to reference McDermott MM, Carroll TJ, Kibbe M, Cm K, Liu K, Guralnik JM, et al. Proximal superficial fermoral artery occlusion, collateral vessels, and walking performance in peripheral artery disease. JACC Cardiovasc Imaging. 2013;6(6):687–94.PubMedPubMedCentralCrossRef McDermott MM, Carroll TJ, Kibbe M, Cm K, Liu K, Guralnik JM, et al. Proximal superficial fermoral artery occlusion, collateral vessels, and walking performance in peripheral artery disease. JACC Cardiovasc Imaging. 2013;6(6):687–94.PubMedPubMedCentralCrossRef
8.
go back to reference Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76.PubMedCrossRef Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76.PubMedCrossRef
9.
go back to reference Lee KH, Jung KH, Song SH, Kim DH, Lee BC, Sung HJ, et al. Radiolabeled RGD uptake and αv integrin expression is enhanced in ischemic murine hindlimbs. J Nucl Med. 2005;46(3):472–8 PMID:15750161.PubMed Lee KH, Jung KH, Song SH, Kim DH, Lee BC, Sung HJ, et al. Radiolabeled RGD uptake and αv integrin expression is enhanced in ischemic murine hindlimbs. J Nucl Med. 2005;46(3):472–8 PMID:15750161.PubMed
10.
go back to reference Hua J, Dobrucki LW, Sadeghi MM, Zhang J, Bourke BN, Cavaliere P, et al. Nonivasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at ανβз integrin after murine hindlimb ischemia. Circulation. 2005;111:3255–60.PubMedCrossRef Hua J, Dobrucki LW, Sadeghi MM, Zhang J, Bourke BN, Cavaliere P, et al. Nonivasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at ανβз integrin after murine hindlimb ischemia. Circulation. 2005;111:3255–60.PubMedCrossRef
11.
go back to reference Kapanadze T, Bankstahl JP, Witttneben A, Koestner W, Ballmaier M, Gamrekelashvili J, et. Al. Multimodal and multiscale analysis reveals distinct vascular, metabolic and inflammatory components of tissue response to limb ischemia. Theranostics 2019;9:152-166. Kapanadze T, Bankstahl JP, Witttneben A, Koestner W, Ballmaier M, Gamrekelashvili J, et. Al. Multimodal and multiscale analysis reveals distinct vascular, metabolic and inflammatory components of tissue response to limb ischemia. Theranostics 2019;9:152-166.
12.
go back to reference Hendrikx G, Vöö BM, Post MJ, Mottaghy MF. SPECT and PET imaging of angiogenesis and arteriogenesis in pre-clinical models of myocardial ischemia and peripheral vascular disease. Eur J Nucl Med Mol Imaging. 2016;43:2433–47.PubMedPubMedCentralCrossRef Hendrikx G, Vöö BM, Post MJ, Mottaghy MF. SPECT and PET imaging of angiogenesis and arteriogenesis in pre-clinical models of myocardial ischemia and peripheral vascular disease. Eur J Nucl Med Mol Imaging. 2016;43:2433–47.PubMedPubMedCentralCrossRef
13.
go back to reference Orbay H, Hong H, Zhang Y, Cai W. PET/SPECT Imaging of hindlimb ischemia: focusing on angiogenesis and blood flow. Angiogenesis. 2013;16:279–87.PubMedCrossRef Orbay H, Hong H, Zhang Y, Cai W. PET/SPECT Imaging of hindlimb ischemia: focusing on angiogenesis and blood flow. Angiogenesis. 2013;16:279–87.PubMedCrossRef
14.
go back to reference Backer MV, Levashova Z, Patel V, Jehning BT, Claffey K, Blankenberg FG, et al. Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med. 2007;13(4):504–9.PubMedCrossRef Backer MV, Levashova Z, Patel V, Jehning BT, Claffey K, Blankenberg FG, et al. Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med. 2007;13(4):504–9.PubMedCrossRef
15.
go back to reference Levashova Z, Backer M, Backer JM, Blankenberg FG. Direct site-specific labeling of the Cys-tag moiety in scVEGF with technetium 99m. Bioconjug Chem. 2008;19(5):1049–54.PubMedCrossRef Levashova Z, Backer M, Backer JM, Blankenberg FG. Direct site-specific labeling of the Cys-tag moiety in scVEGF with technetium 99m. Bioconjug Chem. 2008;19(5):1049–54.PubMedCrossRef
16.
go back to reference Tekabe Y, Li Q, Johnson J, Schmidt AM, Backer M, Backer J, et al. Imaging VEGF receptors and αvβ3 integrins in a mouse hindlimb ischemia model of peripheral arterial disease. Mol Imaging Biol. 2018;20(6):963–72.PubMedCrossRef Tekabe Y, Li Q, Johnson J, Schmidt AM, Backer M, Backer J, et al. Imaging VEGF receptors and αvβ3 integrins in a mouse hindlimb ischemia model of peripheral arterial disease. Mol Imaging Biol. 2018;20(6):963–72.PubMedCrossRef
17.
go back to reference Seder JS, Botwinick EH, Rahimtoola SH, Goldstone J, Prince DC. Detecting and localizing peripheral arterial disease: assessment of 201IT scintigraphy. Am J Roentgenol. 1981;137:373–80.CrossRef Seder JS, Botwinick EH, Rahimtoola SH, Goldstone J, Prince DC. Detecting and localizing peripheral arterial disease: assessment of 201IT scintigraphy. Am J Roentgenol. 1981;137:373–80.CrossRef
18.
go back to reference OShima M, Akanabe H, Sakuma S, Yano T, Nishikimi N, Shionoya S. Quantification of leg muscle perfusion using thallium-201 single photon emission computed tomography. J Nucl Med. 1989;30:458–65.PubMed OShima M, Akanabe H, Sakuma S, Yano T, Nishikimi N, Shionoya S. Quantification of leg muscle perfusion using thallium-201 single photon emission computed tomography. J Nucl Med. 1989;30:458–65.PubMed
19.
go back to reference Stacy M, Yu D-Y, Maxfield M, Jaba IM, Jozwik BP, Zhuang ZW, et al. Multimodality imaging approach for serial assessment of regional changes in lower extremity arteriogenesis and tissue perfusion in a porcine model of peripheral arterial disease. Circ Cardiovasc Imaging. 2014;7:92–9.PubMedCrossRef Stacy M, Yu D-Y, Maxfield M, Jaba IM, Jozwik BP, Zhuang ZW, et al. Multimodality imaging approach for serial assessment of regional changes in lower extremity arteriogenesis and tissue perfusion in a porcine model of peripheral arterial disease. Circ Cardiovasc Imaging. 2014;7:92–9.PubMedCrossRef
20.
go back to reference Botham CM, Bennett WL, Cooke JP. Clinical trials of adult stem cell therapy for peripheral artery disease. 2013;9:201–5. Botham CM, Bennett WL, Cooke JP. Clinical trials of adult stem cell therapy for peripheral artery disease. 2013;9:201–5.
21.
go back to reference Tammela T, Enholm B, Alitalo K, Paavonen K. The biology of vascular endothelial growth factors. Cardiovasc Res. 2005;65(3):550–63.PubMedCrossRef Tammela T, Enholm B, Alitalo K, Paavonen K. The biology of vascular endothelial growth factors. Cardiovasc Res. 2005;65(3):550–63.PubMedCrossRef
22.
go back to reference Babiak A, Schumm AM, Wangler C, Loukas M, Wu J, Dombrowski S, et al. Coordinated activation of VEGFR-1 and VEGFR-2 is a potent arteriogenic stimulus leading to enhancement of regional perfusion. Cardiovasc Res. 2004;61(4):789–95.PubMedCrossRef Babiak A, Schumm AM, Wangler C, Loukas M, Wu J, Dombrowski S, et al. Coordinated activation of VEGFR-1 and VEGFR-2 is a potent arteriogenic stimulus leading to enhancement of regional perfusion. Cardiovasc Res. 2004;61(4):789–95.PubMedCrossRef
23.
go back to reference Tuomisto TT, Rissanen TT, Vajanto I, Korkeela A, Rutanen J, Ylä-Herttuala S. HIF-VEGF-VEGFR-2, TNF-alpha and IGF pathways are upregulated in critical human skeletal muscle ischemia as studied with DNA array. Atherosclerosis. 2004;174(1):111–20.PubMedCrossRef Tuomisto TT, Rissanen TT, Vajanto I, Korkeela A, Rutanen J, Ylä-Herttuala S. HIF-VEGF-VEGFR-2, TNF-alpha and IGF pathways are upregulated in critical human skeletal muscle ischemia as studied with DNA array. Atherosclerosis. 2004;174(1):111–20.PubMedCrossRef
24.
go back to reference Rissanen TT, Vajanto I, Hiltunen MO, Rutanen J, Kettunen MI, Niemi M, et al. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 (KDR/Flk-1) in ischemic skeletal muscle and its regeneration. Am J Pathol. 2002;160(4):1393–403.PubMedPubMedCentralCrossRef Rissanen TT, Vajanto I, Hiltunen MO, Rutanen J, Kettunen MI, Niemi M, et al. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 (KDR/Flk-1) in ischemic skeletal muscle and its regeneration. Am J Pathol. 2002;160(4):1393–403.PubMedPubMedCentralCrossRef
25.
go back to reference Ganta VC, Choi M, Kutateladze A, Annex BH. VEGF 165b modulates endothelial VEGFR1-STAT3 signaling pathway and angiogenesis in human and experimental peripheral arterial disease. Circ Res. 2017;120:282–95.PubMedCrossRef Ganta VC, Choi M, Kutateladze A, Annex BH. VEGF 165b modulates endothelial VEGFR1-STAT3 signaling pathway and angiogenesis in human and experimental peripheral arterial disease. Circ Res. 2017;120:282–95.PubMedCrossRef
26.
go back to reference Germani A, Di Carlo A, Mangoni A, Straino S, Giacinti C, Turrini P, et al. Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol. 2003;163(4):1417–28.PubMedPubMedCentralCrossRef Germani A, Di Carlo A, Mangoni A, Straino S, Giacinti C, Turrini P, et al. Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol. 2003;163(4):1417–28.PubMedPubMedCentralCrossRef
27.
go back to reference Tekabe Y, Johnson LL, Rodriquez K, Li Q, Backer M, Backer JM. Selective imaging of vascular endothelial growth factor receptor-1 and receptor-2 in atherosclerotic lesions in diabetic and non-diabetic ApoE-/- mice. Mol Imaging Biol. 2018;20:85–93.PubMedCrossRef Tekabe Y, Johnson LL, Rodriquez K, Li Q, Backer M, Backer JM. Selective imaging of vascular endothelial growth factor receptor-1 and receptor-2 in atherosclerotic lesions in diabetic and non-diabetic ApoE-/- mice. Mol Imaging Biol. 2018;20:85–93.PubMedCrossRef
28.
go back to reference Shoji T, Koyama H, Moriako T, Tanaka S, Kizu A, Montoyama K, et al. Receptor for advanced glycation end products is involved in impaired angiogenic response in diabetes. Diabetes. 2006;55:2245–55 PMID: 16873687.PubMedCrossRef Shoji T, Koyama H, Moriako T, Tanaka S, Kizu A, Montoyama K, et al. Receptor for advanced glycation end products is involved in impaired angiogenic response in diabetes. Diabetes. 2006;55:2245–55 PMID: 16873687.PubMedCrossRef
29.
go back to reference Waltenberger J. VEGF resistance as a molecular basis to explain the angiogenesis paradox in diabetes mellitus. Biochem Soc Trans. 2009;37(Pt 6):1167–70.PubMedCrossRef Waltenberger J. VEGF resistance as a molecular basis to explain the angiogenesis paradox in diabetes mellitus. Biochem Soc Trans. 2009;37(Pt 6):1167–70.PubMedCrossRef
30.
go back to reference Hansen LM, Gupta D, Joseph G, et al. The receptor for advanced glycation end products impairs collateral formation in both diabetic and non-diabetic mice. Lab Invest. 2017;97:34–42.PubMedCrossRef Hansen LM, Gupta D, Joseph G, et al. The receptor for advanced glycation end products impairs collateral formation in both diabetic and non-diabetic mice. Lab Invest. 2017;97:34–42.PubMedCrossRef
31.
go back to reference Tekabe Y, Anthony T, Li Q, Ray R, Rai V, Zhang G, et al. Treatment effect with anti-RAGE F(ab′)2 antibody improves hind limb angiogenesis and blood flow in Type 1 diabetic mice with left femoral artery ligation. Vasc Med. 2015;20(3):212–8 PMID: 25808570.PubMedCrossRef Tekabe Y, Anthony T, Li Q, Ray R, Rai V, Zhang G, et al. Treatment effect with anti-RAGE F(ab′)2 antibody improves hind limb angiogenesis and blood flow in Type 1 diabetic mice with left femoral artery ligation. Vasc Med. 2015;20(3):212–8 PMID: 25808570.PubMedCrossRef
32.
go back to reference Tekabe Y, Shen X, Luma J, Weisenberger D, Yan SF, Haubner R, et al. Imaging the effect of receptor for advanced glycation endproducts on angiogenic response to hind limb ischemia in diabetes. EJNMMI Res. 2011;1(1):3 PMCID: PMC3192466.PubMedPubMedCentralCrossRef Tekabe Y, Shen X, Luma J, Weisenberger D, Yan SF, Haubner R, et al. Imaging the effect of receptor for advanced glycation endproducts on angiogenic response to hind limb ischemia in diabetes. EJNMMI Res. 2011;1(1):3 PMCID: PMC3192466.PubMedPubMedCentralCrossRef
33.
go back to reference Hendrikx G, Vӧӧ S, Bauwens M, et al. SPECT and PET imaging of angiogenesis and arteriogenesis in pre-clinical models of myocardial ischemia and peripheral vascular disease. EJNMMI. 2016;43:2433–47. Hendrikx G, Vӧӧ S, Bauwens M, et al. SPECT and PET imaging of angiogenesis and arteriogenesis in pre-clinical models of myocardial ischemia and peripheral vascular disease. EJNMMI. 2016;43:2433–47.
34.
go back to reference Renner S, Dobenecker B, Blutke A, Zols S, Wanke R, Ritzmann M, et al. Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research. Theriogenology. 2016;86:406–21.PubMedCrossRef Renner S, Dobenecker B, Blutke A, Zols S, Wanke R, Ritzmann M, et al. Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research. Theriogenology. 2016;86:406–21.PubMedCrossRef
Metadata
Title
VEGF receptor targeted imaging of angiogenic response to limb ischemia in diabetic vs. non-diabetic Yucatan minipigs
Authors
Lynne L. Johnson
Jordan Johnson
Ziad Ali
Yared Tekabe
Rebecca Ober
Gail Geist
Alicia McLuckie
Aram Safarov
April Holland
Geping Zhang
Marina Backer
Joseph Backer
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2020
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-020-00626-0

Other articles of this Issue 1/2020

EJNMMI Research 1/2020 Go to the issue