Skip to main content
Top
Published in: EJNMMI Research 1/2019

Open Access 01-12-2019 | Radiotherapy | Original research

18F-Fluorodeoxyglucose positron emission tomography may not visualize radiation pneumonitis

Authors: Meiying Guo, Liang Qi, Yun Zhang, Dongping Shang, Jinming Yu, Jinbo Yue

Published in: EJNMMI Research | Issue 1/2019

Login to get access

Abstract

Background

Radiation pneumonitis is a common and potentially fatal complication of radiotherapy (RT). Some patients with radiation pneumonitis show increases in uptake of fluorodeoxyglucose (FDG) on positron emission tomography (PET), but others do not. The exact relationship between radiation pneumonitis and 18F-FDG PET findings remains controversial.

Methods

We used an animal model of radiation pneumonitis involving both radiation and simulated bacterial infection in Wistar rats. Treatment groups (10 rats/group) were as follows: control, RT-only, lipopolysaccharide (LPS)-only, and RT+LPS. All rats had micro-PET scans at 7 weeks after RT (or sham). Histologic, immunohistochemical, and biochemical analyses were performed to evaluate potential mechanisms.

Results

Irradiated rats had developed radiation pneumonitis at 7 weeks after RT based on pathology and CT scans. Maximum and mean standardized uptake values (SUVmax and SUVmean) at that time were significantly increased in the LPS group (P < 0.001 for both) and the RT+LPS group (P < 0.001 for both) relative to control, but were not different in the RT-only group (P = 0.156 SUVmax and P = 0.304 SUVmean). The combination of RT and LPS increased the expression of the aerobic glycolysis enzyme PKM2 (P < 0.001) and the glucose transporter GLUT1 (P = 0.004) in lung tissues. LPS alone increased the expression of PKM2 (P = 0.018), but RT alone did not affect PKM2 (P = 0.270) or GLUT1 (P = 0.989).

Conclusions

Aseptic radiation pneumonitis could not be accurately assessed by 18F-FDG PET, but was visualized after simulated bacterial infection via LPS. The underlying mechanism of the model of bacterial infection causing increased FDG uptake may be the Warburg effect.
Appendix
Available only for authorised users
Literature
1.
go back to reference 2nd SC. Thoracic radiation normal tissue injury. Semin Radiat Oncol. 2017; 27: 370. 2nd SC. Thoracic radiation normal tissue injury. Semin Radiat Oncol. 2017; 27: 370.
2.
go back to reference Wang JY, Chen KY, Wang JT, et al. Outcome and prognostic factors for patients with non-small-cell lung cancer and severe radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2002;54:735–41.PubMedCrossRef Wang JY, Chen KY, Wang JT, et al. Outcome and prognostic factors for patients with non-small-cell lung cancer and severe radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2002;54:735–41.PubMedCrossRef
3.
go back to reference Kocak Z, Evans ES, Zhou SM, et al. Challenges in defining radiation pneumonitis in patients with lung cancer. Int J Radiat Oncol Biol Phys. 2005;62:635–8.PubMedCrossRef Kocak Z, Evans ES, Zhou SM, et al. Challenges in defining radiation pneumonitis in patients with lung cancer. Int J Radiat Oncol Biol Phys. 2005;62:635–8.PubMedCrossRef
4.
go back to reference Van den Wyngaert T, Helsen N, Carp L, et al. Fluorodeoxyglucose-positron emission tomography/computed tomography after concurrent chemoradiotherapy in locally advanced head-and-neck squamous cell cancer: the ECLYPS study. J Clin Oncol. 2017;35:3458–64.PubMedCrossRef Van den Wyngaert T, Helsen N, Carp L, et al. Fluorodeoxyglucose-positron emission tomography/computed tomography after concurrent chemoradiotherapy in locally advanced head-and-neck squamous cell cancer: the ECLYPS study. J Clin Oncol. 2017;35:3458–64.PubMedCrossRef
5.
go back to reference Cavo M, Terpos E, Nanni C, et al. Role of (18)F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group. Lancet Oncol. 2017;18:e206–17.PubMedCrossRef Cavo M, Terpos E, Nanni C, et al. Role of (18)F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group. Lancet Oncol. 2017;18:e206–17.PubMedCrossRef
6.
go back to reference Yamamura K, Izumi D, Kandimalla R, et al. Intratumoral fusobacterium nucleatum levels predict therapeutic response to neoadjuvant chemotherapy in esophageal squamous cell carcinoma. Clin Cancer Res. 2019;25:6170–9.PubMedCrossRefPubMedCentral Yamamura K, Izumi D, Kandimalla R, et al. Intratumoral fusobacterium nucleatum levels predict therapeutic response to neoadjuvant chemotherapy in esophageal squamous cell carcinoma. Clin Cancer Res. 2019;25:6170–9.PubMedCrossRefPubMedCentral
7.
go back to reference Gupta NC, Tamim WJ, Graeber GG, et al. Mediastinal lymph node sampling following positron emission tomography with fluorodeoxyglucose imaging in lung cancer staging. Chest. 2001;120:521–7.PubMedCrossRef Gupta NC, Tamim WJ, Graeber GG, et al. Mediastinal lymph node sampling following positron emission tomography with fluorodeoxyglucose imaging in lung cancer staging. Chest. 2001;120:521–7.PubMedCrossRef
8.
go back to reference Salavati A, Duan F, Snyder BS, et al. Optimal FDG PET/CT volumetric parameters for risk stratification in patients with locally advanced non-small cell lung cancer: results from the ACRIN 6668/RTOG 0235 trial. Eur J Nucl Med Mol Imaging. 2017;44:1969–83.PubMedPubMedCentralCrossRef Salavati A, Duan F, Snyder BS, et al. Optimal FDG PET/CT volumetric parameters for risk stratification in patients with locally advanced non-small cell lung cancer: results from the ACRIN 6668/RTOG 0235 trial. Eur J Nucl Med Mol Imaging. 2017;44:1969–83.PubMedPubMedCentralCrossRef
9.
go back to reference Geiger GA, Kim MB, Xanthopoulos EP, et al. Stage migration in planning PET/CT scans in patients due to receive radiotherapy for non–small-cell lung cancer. Clin Lung Cancer. 2014;15:79–85.PubMedCrossRef Geiger GA, Kim MB, Xanthopoulos EP, et al. Stage migration in planning PET/CT scans in patients due to receive radiotherapy for non–small-cell lung cancer. Clin Lung Cancer. 2014;15:79–85.PubMedCrossRef
10.
go back to reference Kubota K, Yamashita H, Mimori A. Clinical value of FDG-PET/CT for the evaluation of rheumatic diseases: rheumatoid arthritis, polymyalgia rheumatica, and relapsing polychondritis. Semin Nucl Med. 2017;47:408–24.PubMedCrossRef Kubota K, Yamashita H, Mimori A. Clinical value of FDG-PET/CT for the evaluation of rheumatic diseases: rheumatoid arthritis, polymyalgia rheumatica, and relapsing polychondritis. Semin Nucl Med. 2017;47:408–24.PubMedCrossRef
11.
go back to reference Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 2004;84:1014–20.PubMedCrossRef Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 2004;84:1014–20.PubMedCrossRef
12.
go back to reference Raulien N, Friedrich K, Strobel S, et al. Fatty acid oxidation compensates for lipopolysaccharide-induced Warburg effect in glucose-deprived monocytes. Front Immunol. 2017;8:609.PubMedPubMedCentralCrossRef Raulien N, Friedrich K, Strobel S, et al. Fatty acid oxidation compensates for lipopolysaccharide-induced Warburg effect in glucose-deprived monocytes. Front Immunol. 2017;8:609.PubMedPubMedCentralCrossRef
13.
go back to reference Palsson-McDermott EM, Curtis AM, Goel G, et al. Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 2015;21:65–80.PubMedPubMedCentralCrossRef Palsson-McDermott EM, Curtis AM, Goel G, et al. Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 2015;21:65–80.PubMedPubMedCentralCrossRef
14.
15.
go back to reference Shusharina N, Liao Z, Mohan R, et al. Differences in lung injury after IMRT or proton therapy assessed by 18FDG PET imaging. Radiother Oncol. 2018;128:147–53.PubMedCrossRef Shusharina N, Liao Z, Mohan R, et al. Differences in lung injury after IMRT or proton therapy assessed by 18FDG PET imaging. Radiother Oncol. 2018;128:147–53.PubMedCrossRef
16.
go back to reference Abdulla S, Salavati A, Saboury B, et al. Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study. Eur J Nucl Med Mol Imaging. 2014;41:350–6.PubMedCrossRef Abdulla S, Salavati A, Saboury B, et al. Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study. Eur J Nucl Med Mol Imaging. 2014;41:350–6.PubMedCrossRef
17.
go back to reference Zanette B, Stirrat E, Jelveh S, et al. Physiological gas exchange mapping of hyperpolarized (129) Xe using spiral-IDEAL and MOXE in a model of regional radiation-induced lung injury. Med Phys. 2018;45:803–16.PubMedCrossRef Zanette B, Stirrat E, Jelveh S, et al. Physiological gas exchange mapping of hyperpolarized (129) Xe using spiral-IDEAL and MOXE in a model of regional radiation-induced lung injury. Med Phys. 2018;45:803–16.PubMedCrossRef
19.
go back to reference Medhora M, Haworth S, Liu Y, et al. Biomarkers for radiation pneumonitis using noninvasive molecular imaging. J Nucl Med. 2016;57:1296–301.PubMedCrossRef Medhora M, Haworth S, Liu Y, et al. Biomarkers for radiation pneumonitis using noninvasive molecular imaging. J Nucl Med. 2016;57:1296–301.PubMedCrossRef
20.
go back to reference Doganay O, Stirrat E, McKenzie C, et al. Quantification of regional early stage gas exchange changes using hyperpolarized (129) Xe MRI in a rat model of radiation-induced lung injury. Med Phys. 2016;43:2410.PubMedCrossRef Doganay O, Stirrat E, McKenzie C, et al. Quantification of regional early stage gas exchange changes using hyperpolarized (129) Xe MRI in a rat model of radiation-induced lung injury. Med Phys. 2016;43:2410.PubMedCrossRef
21.
go back to reference Ido T, Wan C-N, Casella V, et al. Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Labelled Comp Radiopharm. 1978;14:175–83.CrossRef Ido T, Wan C-N, Casella V, et al. Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Labelled Comp Radiopharm. 1978;14:175–83.CrossRef
22.
23.
go back to reference Eda Y, Higginson DS, Merdan F, et al. Challenges scoring radiation pneumonitis in patients irradiated for lung cancer. Lung Cancer. 2012;76:350–3.CrossRef Eda Y, Higginson DS, Merdan F, et al. Challenges scoring radiation pneumonitis in patients irradiated for lung cancer. Lung Cancer. 2012;76:350–3.CrossRef
24.
go back to reference Echeverria AE, Mccurdy M, Castillo R, et al. Proton therapy radiation pneumonitis local dose–response in esophagus cancer patients. Radiother Oncol. 2013;106:124–9.PubMedCrossRef Echeverria AE, Mccurdy M, Castillo R, et al. Proton therapy radiation pneumonitis local dose–response in esophagus cancer patients. Radiother Oncol. 2013;106:124–9.PubMedCrossRef
25.
go back to reference Hart JP, Mccurdy MR, Muthuveni E, et al. Radiation pneumonitis: correlation of toxicity with pulmonary metabolic radiation response. Int J Radiat Oncol Biol Phys. 2008;71:967–71.PubMedPubMedCentralCrossRef Hart JP, Mccurdy MR, Muthuveni E, et al. Radiation pneumonitis: correlation of toxicity with pulmonary metabolic radiation response. Int J Radiat Oncol Biol Phys. 2008;71:967–71.PubMedPubMedCentralCrossRef
26.
go back to reference Guerrero T, Johnson V, Hart J, et al. Radiation pneumonitis: local dose versus [18F]-fluorodeoxyglucose uptake response in irradiated lung. Int J Radiat Oncol Biol Phys. 2007;68:1030–5.PubMedCrossRef Guerrero T, Johnson V, Hart J, et al. Radiation pneumonitis: local dose versus [18F]-fluorodeoxyglucose uptake response in irradiated lung. Int J Radiat Oncol Biol Phys. 2007;68:1030–5.PubMedCrossRef
27.
go back to reference Hicks RJ, Manus MP, Mac MJP, et al. Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int J Radiat Oncol Biol Phys. 2004;60:412–8.PubMedCrossRef Hicks RJ, Manus MP, Mac MJP, et al. Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int J Radiat Oncol Biol Phys. 2004;60:412–8.PubMedCrossRef
28.
go back to reference Rubin P, Casarett GW. Clinical radiation pathology as applied to curative radiotherapy. Cancer. 1968;22:767–78.PubMedCrossRef Rubin P, Casarett GW. Clinical radiation pathology as applied to curative radiotherapy. Cancer. 1968;22:767–78.PubMedCrossRef
32.
go back to reference Abratt RP, Morgan GW, Silvestri G, Willcox P. Pulmonary complications of radiation therapy. Clin Chest Med. 2004;25:167–77.PubMedCrossRef Abratt RP, Morgan GW, Silvestri G, Willcox P. Pulmonary complications of radiation therapy. Clin Chest Med. 2004;25:167–77.PubMedCrossRef
34.
go back to reference Castillo R, Pham N, Castillo E, et al. Pre-radiation therapy fluorine 18 fluorodeoxyglucose PET helps identify patients with esophageal cancer at high risk for radiation pneumonitis. Radiology. 2015;275:822–31.PubMedCrossRef Castillo R, Pham N, Castillo E, et al. Pre-radiation therapy fluorine 18 fluorodeoxyglucose PET helps identify patients with esophageal cancer at high risk for radiation pneumonitis. Radiology. 2015;275:822–31.PubMedCrossRef
36.
go back to reference Zhang Y, Yu Y, Yu J, et al. 18FDG PET-CT standardized uptake value for the prediction of radiation pneumonitis in patients with lung cancer receiving radiotherapy. Oncol Lett. 2015;10:2909–14.PubMedPubMedCentralCrossRef Zhang Y, Yu Y, Yu J, et al. 18FDG PET-CT standardized uptake value for the prediction of radiation pneumonitis in patients with lung cancer receiving radiotherapy. Oncol Lett. 2015;10:2909–14.PubMedPubMedCentralCrossRef
37.
go back to reference McCurdy MR, Castillo R, Martinez J, et al. [18F]-FDG uptake dose-response correlates with radiation pneumonitis in lung cancer patients. Radiother Oncol. 2012;104:52–7.PubMedPubMedCentralCrossRef McCurdy MR, Castillo R, Martinez J, et al. [18F]-FDG uptake dose-response correlates with radiation pneumonitis in lung cancer patients. Radiother Oncol. 2012;104:52–7.PubMedPubMedCentralCrossRef
38.
go back to reference Mac Manus MP, Ding Z, Hogg A, et al. Association between pulmonary uptake of fluorodeoxyglucose detected by positron emission tomography scanning after radiation therapy for non-small-cell lung cancer and radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2011;80:1365–71.PubMedCrossRef Mac Manus MP, Ding Z, Hogg A, et al. Association between pulmonary uptake of fluorodeoxyglucose detected by positron emission tomography scanning after radiation therapy for non-small-cell lung cancer and radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2011;80:1365–71.PubMedCrossRef
39.
go back to reference Alfarouk KO, Verduzco D, Rauch C, et al. Erratum: Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience. 2015;2:317.PubMedCrossRef Alfarouk KO, Verduzco D, Rauch C, et al. Erratum: Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience. 2015;2:317.PubMedCrossRef
40.
go back to reference Batra S, Adekola KU, Rosen ST, Shanmugam M. Cancer metabolism as a therapeutic target. Oncology (Williston Park). 2013;27:460–7. Batra S, Adekola KU, Rosen ST, Shanmugam M. Cancer metabolism as a therapeutic target. Oncology (Williston Park). 2013;27:460–7.
41.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.PubMedPubMedCentralCrossRef Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.PubMedPubMedCentralCrossRef
42.
go back to reference Zhang Q, Hu Q, Chu Y, et al. The influence of radiotherapy on AIM2 inflammasome in radiation pneumonitis. Inflammation. 2016;39:1827–34.PubMedCrossRef Zhang Q, Hu Q, Chu Y, et al. The influence of radiotherapy on AIM2 inflammasome in radiation pneumonitis. Inflammation. 2016;39:1827–34.PubMedCrossRef
Metadata
Title
18F-Fluorodeoxyglucose positron emission tomography may not visualize radiation pneumonitis
Authors
Meiying Guo
Liang Qi
Yun Zhang
Dongping Shang
Jinming Yu
Jinbo Yue
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2019
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-019-0571-0

Other articles of this Issue 1/2019

EJNMMI Research 1/2019 Go to the issue