Skip to main content
Top
Published in: EJNMMI Research 1/2019

Open Access 01-12-2019 | Positron Emission Tomography | Original research

Biodistribution and radiation dosimetry of the novel hypoxia PET probe [18F]DiFA and comparison with [18F]FMISO

Authors: Shiro Watanabe, Tohru Shiga, Kenji Hirata, Keiichi Magota, Shozo Okamoto, Takuya Toyonaga, Kei Higashikawa, Hironobu Yasui, Jun Kobayashi, Ken-ichi Nishijima, Ken Iseki, Hiroki Matsumoto, Yuji Kuge, Nagara Tamaki

Published in: EJNMMI Research | Issue 1/2019

Login to get access

Abstract

Background

To facilitate hypoxia imaging in a clinical setting, we developed 1-(2,2-dihydroxymethyl-3-[18F]-fluoropropyl)-2-nitroimidazole ([18F]DiFA) as a new tracer that targets tumor hypoxia with its lower lipophilicity and efficient radiosynthesis. Here, we evaluated the radiation dosage, biodistribution, human safety, tolerability, and early elimination after the injection of [18F]DiFA in healthy subjects, and we performed a preliminary clinical study of patients with malignant tumors in a comparison with [18F]fluoromisonidazole ([18F]FMISO).

Results

The single administration of [18F]DiFA in 8 healthy male adults caused neither adverse events nor abnormal clinical findings. Dynamic and sequential whole-body scans showed that [18F]DiFA was rapidly cleared from all of the organs via the hepatobiliary and urinary systems. The whole-body mean effective dose of [18F]DiFA estimated by using the medical internal radiation dose (MIRD) schema with organ level internal dose assessment/exponential modeling (OLINDA/EXM) computer software 1.1 was 14.4 ± 0.7 μSv/MBq. Among the organs, the urinary bladder received the largest absorbed dose (94.7 ± 13.6 μSv/MBq). The mean absorbed doses of the other organs were equal to or less than those from other hypoxia tracers. The excretion of radioactivity via the urinary system was very rapid, reaching 86.4 ± 7.1% of the administered dose. For the preliminary clinical study, seven patients were subjected to [18F]FMISO and [18F]DiFA positron emission tomography (PET) at 48-h intervals to compare the two tracers’ diagnostic ability for tumor hypoxia. The results of the tumor hypoxia evaluation by [18F]DiFA PET at 1 h and 2 h were not significantly different from those obtained with [18F]FMISO PET at 4 h ([18F]DiFA at 1 h, p = 0.32; [18F]DiFA at 2 h, p = 0.08). Moreover, [18F]DiFA PET at both 1 h (k = 0.68) and 2 h (k = 1.00) showed better inter-observer reproducibility than [18F]FMISO PET at 4 h (k = 0.59).

Conclusion

[18F]DiFA is well tolerated, and its radiation dose is comparable to those of other hypoxia tracers. [18F]DiFA is very rapidly cleared via the urinary system. [18F]DiFA PET generated comparable images to [18F]FMISO PET in hypoxia imaging with shorter waiting time, demonstrating the promising potential of [18F]DiFA PET for hypoxia imaging and for a multicenter trial.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tamaki N, Hirata K. Tumor hypoxia: a new PET imaging biomarker in clinical oncology. Int J Clin Oncol. 2016;21:619–25.CrossRef Tamaki N, Hirata K. Tumor hypoxia: a new PET imaging biomarker in clinical oncology. Int J Clin Oncol. 2016;21:619–25.CrossRef
2.
go back to reference Koh WJ, Rasey JS, Evans ML, Grierson JR, Lewellen TK, Graham MM, et al. Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int J Radiat Oncol Biol Phys. 1992;22:199–212.CrossRef Koh WJ, Rasey JS, Evans ML, Grierson JR, Lewellen TK, Graham MM, et al. Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int J Radiat Oncol Biol Phys. 1992;22:199–212.CrossRef
3.
go back to reference Grunbaum Z, Freauff SJ, Ka K, Wilbur DS, Magee S, Rasey JS. Synthesis and characterization of congeners of misonidazole for imaging hypoxia. J Nucl Med. 1987;28:68–75.PubMed Grunbaum Z, Freauff SJ, Ka K, Wilbur DS, Magee S, Rasey JS. Synthesis and characterization of congeners of misonidazole for imaging hypoxia. J Nucl Med. 1987;28:68–75.PubMed
4.
go back to reference Carlin S, Humm JL. PET of hypoxia: current and future perspectives. J Nucl Med. 2012;53:1171–4.CrossRef Carlin S, Humm JL. PET of hypoxia: current and future perspectives. J Nucl Med. 2012;53:1171–4.CrossRef
5.
go back to reference Peeters SGJA, Zegers CML, Lieuwes NG, van Elmpt W, Eriksson J, van Dongen GAMS, et al. A comparative study of the hypoxia PET tracers [(1)(8)F]HX4, [(1)(8)F]FAZA, and [(1)(8)F]FMISO in a preclinical tumor model. Int J Radiat Oncol Biol Phys. 2015;91:351–9.CrossRef Peeters SGJA, Zegers CML, Lieuwes NG, van Elmpt W, Eriksson J, van Dongen GAMS, et al. A comparative study of the hypoxia PET tracers [(1)(8)F]HX4, [(1)(8)F]FAZA, and [(1)(8)F]FMISO in a preclinical tumor model. Int J Radiat Oncol Biol Phys. 2015;91:351–9.CrossRef
6.
go back to reference Wack LJ, Monnich D, van Elmpt W, Zegers CML, Troost EGC, Zips D, et al. Comparison of [18F]-FMISO, [18F]-FAZA and [18F]-HX4 for PET imaging of hypoxia--a simulation study. Acta Oncol. 2015;54:1370–7.CrossRef Wack LJ, Monnich D, van Elmpt W, Zegers CML, Troost EGC, Zips D, et al. Comparison of [18F]-FMISO, [18F]-FAZA and [18F]-HX4 for PET imaging of hypoxia--a simulation study. Acta Oncol. 2015;54:1370–7.CrossRef
7.
go back to reference Shimizu Y, Zhao S, Yasui H, Nishijima K-I, Matsumoto H, Shiga T, et al. A novel PET probe “[(18)F]DiFA” accumulates in hypoxic region via glutathione conjugation following reductive metabolism. Mol Imaging Biol. 2019;21:122–9.CrossRef Shimizu Y, Zhao S, Yasui H, Nishijima K-I, Matsumoto H, Shiga T, et al. A novel PET probe “[(18)F]DiFA” accumulates in hypoxic region via glutathione conjugation following reductive metabolism. Mol Imaging Biol. 2019;21:122–9.CrossRef
8.
go back to reference Oh SJ, Chi DY, Mosdzianowski C, Kim JY, Gil HS, Kang SH, et al. Fully automated synthesis of [18F]fluoromisonidazole using a conventional [18F]FDG module. Nucl Med Biol. 2005;32:899–905.CrossRef Oh SJ, Chi DY, Mosdzianowski C, Kim JY, Gil HS, Kang SH, et al. Fully automated synthesis of [18F]fluoromisonidazole using a conventional [18F]FDG module. Nucl Med Biol. 2005;32:899–905.CrossRef
9.
go back to reference Tang G, Wang M, Tang X, Gan M, Luo L. Fully automated one-pot synthesis of [18F]fluoromisonidazole. Nucl Med Biol. 2005;32:553–8.CrossRef Tang G, Wang M, Tang X, Gan M, Luo L. Fully automated one-pot synthesis of [18F]fluoromisonidazole. Nucl Med Biol. 2005;32:553–8.CrossRef
11.
go back to reference Savi A, Incerti E, Fallanca F, Bettinardi V, Rossetti F, Monterisi C, et al. First evaluation of PET-based human biodistribution and dosimetry of 18F-FAZA, a tracer for imaging tumor hypoxia. J Nucl Med. 2017;58:1224–9.CrossRef Savi A, Incerti E, Fallanca F, Bettinardi V, Rossetti F, Monterisi C, et al. First evaluation of PET-based human biodistribution and dosimetry of 18F-FAZA, a tracer for imaging tumor hypoxia. J Nucl Med. 2017;58:1224–9.CrossRef
12.
go back to reference Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.PubMed Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.PubMed
13.
go back to reference Graham MM, Peterson LM, Link JM, Evans ML, Rasey JS, Koh WJ, et al. Fluorine-18-fluoromisonidazole radiation dosimetry in imaging studies. J Nucl Med. 1997;38:1631–6.PubMed Graham MM, Peterson LM, Link JM, Evans ML, Rasey JS, Koh WJ, et al. Fluorine-18-fluoromisonidazole radiation dosimetry in imaging studies. J Nucl Med. 1997;38:1631–6.PubMed
14.
go back to reference Doss M, Zhang JJ, Belanger M-J, Stubbs JB, Hostetler ED, Alpaugh K, et al. Biodistribution and radiation dosimetry of the hypoxia marker 18F-HX4 in monkeys and humans determined by using whole-body PET/CT. Nucl Med Commun. 2010;31:1016–24.PubMedPubMedCentral Doss M, Zhang JJ, Belanger M-J, Stubbs JB, Hostetler ED, Alpaugh K, et al. Biodistribution and radiation dosimetry of the hypoxia marker 18F-HX4 in monkeys and humans determined by using whole-body PET/CT. Nucl Med Commun. 2010;31:1016–24.PubMedPubMedCentral
15.
go back to reference Tolvanen T, Lehtio K, Kulmala J, Oikonen V, Eskola O, Bergman J, et al. 18F-Fluoroerythronitroimidazole radiation dosimetry in cancer studies. J Nucl Med. 2002;43:1674–80.PubMed Tolvanen T, Lehtio K, Kulmala J, Oikonen V, Eskola O, Bergman J, et al. 18F-Fluoroerythronitroimidazole radiation dosimetry in cancer studies. J Nucl Med. 2002;43:1674–80.PubMed
16.
go back to reference Brown JM, Workman P. Partition coefficient as a guide to the development of radiosensitizers which are less toxic than misonidazole. Radiat Res. 1980;82:171–90.CrossRef Brown JM, Workman P. Partition coefficient as a guide to the development of radiosensitizers which are less toxic than misonidazole. Radiat Res. 1980;82:171–90.CrossRef
17.
go back to reference Okamoto S, Shiga T, Yasuda K, Ito YM, Magota K, Kasai K, et al. High reproducibility of tumor hypoxia evaluated by 18F-fluoromisonidazole PET for head and neck cancer. J Nucl Med. 2013;54:201–7.CrossRef Okamoto S, Shiga T, Yasuda K, Ito YM, Magota K, Kasai K, et al. High reproducibility of tumor hypoxia evaluated by 18F-fluoromisonidazole PET for head and neck cancer. J Nucl Med. 2013;54:201–7.CrossRef
18.
go back to reference Wang W, Georgi J-C, Nehmeh SA, Narayanan M, Paulus T, Bal M, et al. Evaluation of a compartmental model for estimating tumor hypoxia via FMISO dynamic PET imaging. Phys Med Biol. 2009;54:3083–99.CrossRef Wang W, Georgi J-C, Nehmeh SA, Narayanan M, Paulus T, Bal M, et al. Evaluation of a compartmental model for estimating tumor hypoxia via FMISO dynamic PET imaging. Phys Med Biol. 2009;54:3083–99.CrossRef
19.
go back to reference Thorwarth D, Eschmann SM, Paulsen F, Alber M. A kinetic model for dynamic [18F]-Fmiso PET data to analyse tumour hypoxia. Phys Med Biol. 2005;50:2209–24.CrossRef Thorwarth D, Eschmann SM, Paulsen F, Alber M. A kinetic model for dynamic [18F]-Fmiso PET data to analyse tumour hypoxia. Phys Med Biol. 2005;50:2209–24.CrossRef
20.
go back to reference Yasui H, Zhao S, Higashikawa K, Ukon N, Shimizu Y, Matsumoto H, et al. Preclinical evaluation of [18F]DiFA, a novel PET probe for tumor hypoxia, in comparison with [18F]MISO. J Nucl Med [Internet]. 2017;58:1027. Yasui H, Zhao S, Higashikawa K, Ukon N, Shimizu Y, Matsumoto H, et al. Preclinical evaluation of [18F]DiFA, a novel PET probe for tumor hypoxia, in comparison with [18F]MISO. J Nucl Med [Internet]. 2017;58:1027.
21.
go back to reference Kobayashi K, Hirata K, Yamaguchi S, Kobayashi H, Terasaka S, Manabe O, et al. FMISO PET at 4 hours showed a better lesion-to-background ratio uptake than 2 hours in brain tumors. J Nucl Med. 2015;56:373. Kobayashi K, Hirata K, Yamaguchi S, Kobayashi H, Terasaka S, Manabe O, et al. FMISO PET at 4 hours showed a better lesion-to-background ratio uptake than 2 hours in brain tumors. J Nucl Med. 2015;56:373.
22.
go back to reference Hirata K, Terasaka S, Shiga T, Hattori N, Magota K, Kobayashi H, et al. (1)(8)F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas. Eur J Nucl Med Mol Imaging. 2012;39:760–70.CrossRef Hirata K, Terasaka S, Shiga T, Hattori N, Magota K, Kobayashi H, et al. (1)(8)F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas. Eur J Nucl Med Mol Imaging. 2012;39:760–70.CrossRef
23.
go back to reference Yamamoto Y, Maeda Y, Kawai N, Kudomi N, Aga F, Ono Y, et al. Hypoxia assessed by 18F-fluoromisonidazole positron emission tomography in newly diagnosed gliomas. Nucl Med Commun. 2012;33:621–5.CrossRef Yamamoto Y, Maeda Y, Kawai N, Kudomi N, Aga F, Ono Y, et al. Hypoxia assessed by 18F-fluoromisonidazole positron emission tomography in newly diagnosed gliomas. Nucl Med Commun. 2012;33:621–5.CrossRef
24.
go back to reference Lopci E, Grassi I, Chiti A, Nanni C, Cicoria G, Toschi L, et al. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am J Nucl Med Mol Imaging. 2014;4:365–84.PubMedPubMedCentral Lopci E, Grassi I, Chiti A, Nanni C, Cicoria G, Toschi L, et al. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am J Nucl Med Mol Imaging. 2014;4:365–84.PubMedPubMedCentral
25.
go back to reference Nakata N, Kiriu M, Okumura Y, Zhao S, Nishijima K-I, Shiga T, et al. Comparative evaluation of [(18)F]DiFA and its analogs as novel hypoxia positron emission tomography and [(18)F]FMISO as the standard. Nucl Med Biol. 2019;70:39–45.CrossRef Nakata N, Kiriu M, Okumura Y, Zhao S, Nishijima K-I, Shiga T, et al. Comparative evaluation of [(18)F]DiFA and its analogs as novel hypoxia positron emission tomography and [(18)F]FMISO as the standard. Nucl Med Biol. 2019;70:39–45.CrossRef
26.
go back to reference Wei Y, Zhao W, Huang Y, Yu Q, Zhu S, Wang S, et al. A comparative study of noninvasive hypoxia imaging with 18F-fluoroerythronitroimidazole and 18F-fluoromisonidazole PET/CT in patients with lung cancer. PLoS One. 2016;11:e0157606.CrossRef Wei Y, Zhao W, Huang Y, Yu Q, Zhu S, Wang S, et al. A comparative study of noninvasive hypoxia imaging with 18F-fluoroerythronitroimidazole and 18F-fluoromisonidazole PET/CT in patients with lung cancer. PLoS One. 2016;11:e0157606.CrossRef
27.
go back to reference Nakata N, Okumura Y, Nagata E, Kiriu M, Hayashi A, Nishijima K, et al. Evaluation of a new PET hypoxia tracer, [18F]HIC101, in comparison with [18F]FMISO. J Nucl Med. 2012;53:1523. Nakata N, Okumura Y, Nagata E, Kiriu M, Hayashi A, Nishijima K, et al. Evaluation of a new PET hypoxia tracer, [18F]HIC101, in comparison with [18F]FMISO. J Nucl Med. 2012;53:1523.
28.
go back to reference Masaki Y, Shimizu Y, Yoshioka T, Tanaka Y, Nishijima K-I, Zhao S, et al. The accumulation mechanism of the hypoxia imaging probe “FMISO” by imaging mass spectrometry: possible involvement of low-molecular metabolites. Sci Rep. 2015;5:16802.CrossRef Masaki Y, Shimizu Y, Yoshioka T, Tanaka Y, Nishijima K-I, Zhao S, et al. The accumulation mechanism of the hypoxia imaging probe “FMISO” by imaging mass spectrometry: possible involvement of low-molecular metabolites. Sci Rep. 2015;5:16802.CrossRef
29.
go back to reference Masaki Y, Shimizu Y, Yoshioka T, Nishijima K-I, Zhao S, Higashino K, et al. FMISO accumulation in tumor is dependent on glutathione conjugation capacity in addition to hypoxic state. Ann Nucl Med. 2017;31:596–604.CrossRef Masaki Y, Shimizu Y, Yoshioka T, Nishijima K-I, Zhao S, Higashino K, et al. FMISO accumulation in tumor is dependent on glutathione conjugation capacity in addition to hypoxic state. Ann Nucl Med. 2017;31:596–604.CrossRef
Metadata
Title
Biodistribution and radiation dosimetry of the novel hypoxia PET probe [18F]DiFA and comparison with [18F]FMISO
Authors
Shiro Watanabe
Tohru Shiga
Kenji Hirata
Keiichi Magota
Shozo Okamoto
Takuya Toyonaga
Kei Higashikawa
Hironobu Yasui
Jun Kobayashi
Ken-ichi Nishijima
Ken Iseki
Hiroki Matsumoto
Yuji Kuge
Nagara Tamaki
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2019
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-019-0525-6

Other articles of this Issue 1/2019

EJNMMI Research 1/2019 Go to the issue