Skip to main content
Top
Published in: EJNMMI Research 1/2018

Open Access 01-12-2018 | Original research

Noninvasive quantitation of rat cerebral blood flow using 99mTc-HMPAO—assessment of input function with dynamic chest planar imaging

Authors: Chie Suzuki, Mutsumi Kosugi, Yasuhiro Magata

Published in: EJNMMI Research | Issue 1/2018

Login to get access

Abstract

Background

Cerebral blood flow (CBF) quantitation using technetium-99m hexamethylpropyleneamine oxime (99mTc-HMPAO) generally requires assessment of input function by arterial blood sampling, which would be invasive for small animals. We therefore performed chest dynamic planar imaging, instead of arterial blood sampling, to estimate the input function and establish noninvasive quantitation method of rat CBF using the image-derived input function.

Results

Integrated radioactivity concentration in the heart-blood pool on planar images (AUCBlood-planar) was identical to that in arterial blood samples (AUCBlood-sampling). Radioactivity concentration in the brain determined by SPECT imaging (CBrain-SPECT) was identical to that using brain sampling (CBrain-sampling). Noninvasively calculated CBF obtained by dividing CBrain-SPECT by AUCBlood-planar was well correlated with conventionally estimated CBF obtained by dividing CBrain-sampling by AUCBlood-sampling.

Conclusion

Rat CBF could be noninvasively quantitated using 99mTc-HMPAO chest dynamic planar imaging and head SPECT imaging without arterial blood sampling.
Literature
1.
go back to reference Catafau AM. Brain SPECT in clinical practice. Part I: perfusion. J Nucl Med. 2001;42:259–71.PubMed Catafau AM. Brain SPECT in clinical practice. Part I: perfusion. J Nucl Med. 2001;42:259–71.PubMed
2.
go back to reference Andersen AR. 99mTc-D,L-hexamethylene-propyleneamine oxime (99mTc-HMPAO): basic kinetic studies of a tracer of cerebral blood flow. Cerebrovasc Brain Metab Rev. 1989;1:288–318.PubMed Andersen AR. 99mTc-D,L-hexamethylene-propyleneamine oxime (99mTc-HMPAO): basic kinetic studies of a tracer of cerebral blood flow. Cerebrovasc Brain Metab Rev. 1989;1:288–318.PubMed
3.
go back to reference Suzuki C, Kimura S, Kosugi M, Magata Y. Quantitation of rat cerebral blood flow using 99mTc-HMPAO. Nucl Med Biol. 2017;47:19–22.CrossRefPubMed Suzuki C, Kimura S, Kosugi M, Magata Y. Quantitation of rat cerebral blood flow using 99mTc-HMPAO. Nucl Med Biol. 2017;47:19–22.CrossRefPubMed
4.
go back to reference Huang CC, Wu CH, Huang YY, Tzen KY, Chen SF, Tsai ML, et al. Performing repeated quantitative small-animal PET with an arterial input function is routinely feasible in rats. J Nucl Med. 2017;58:611–6.CrossRefPubMed Huang CC, Wu CH, Huang YY, Tzen KY, Chen SF, Tsai ML, et al. Performing repeated quantitative small-animal PET with an arterial input function is routinely feasible in rats. J Nucl Med. 2017;58:611–6.CrossRefPubMed
5.
go back to reference Hoff J. Methods of blood collection in the mouse. Lab Animal. 2000;29:47–53. Hoff J. Methods of blood collection in the mouse. Lab Animal. 2000;29:47–53.
6.
go back to reference McGuill MW, Rowan AN. Biological effects of blood loss: implications for sampling volumes and techniques. ILAR J. 1989;31:5–20.CrossRef McGuill MW, Rowan AN. Biological effects of blood loss: implications for sampling volumes and techniques. ILAR J. 1989;31:5–20.CrossRef
7.
go back to reference Kimura Y, Seki C, Hashizume N, Yamada T, Wakizaka H, Nishimoto T, et al. Novel system using microliter order sample volume for measuring arterial radioactivity concentrations in whole blood and plasma for mouse PET dynamic study. Phys Med Biol. 2013;58:7889–903.CrossRefPubMed Kimura Y, Seki C, Hashizume N, Yamada T, Wakizaka H, Nishimoto T, et al. Novel system using microliter order sample volume for measuring arterial radioactivity concentrations in whole blood and plasma for mouse PET dynamic study. Phys Med Biol. 2013;58:7889–903.CrossRefPubMed
8.
go back to reference Zanotti-Fregonara P, Chen K, Liow JS, Fujita M, Innis RB. Image-derived input function for brain PET studies: many challenges and few opportunities. J Cerebr Blood F Met. 2011;31:1986–98.CrossRef Zanotti-Fregonara P, Chen K, Liow JS, Fujita M, Innis RB. Image-derived input function for brain PET studies: many challenges and few opportunities. J Cerebr Blood F Met. 2011;31:1986–98.CrossRef
9.
go back to reference Iida H, Miura S, Shoji Y, Ogawa T, Kado H, Narita Y, et al. Noninvasive quantitation of cerebral blood flow using oxygen-15-water and a dual-PET system. J Nucl Med. 1998;39:1789–98.PubMed Iida H, Miura S, Shoji Y, Ogawa T, Kado H, Narita Y, et al. Noninvasive quantitation of cerebral blood flow using oxygen-15-water and a dual-PET system. J Nucl Med. 1998;39:1789–98.PubMed
10.
go back to reference Yonekura Y, Sugihara H, Taniguchi Y, Aoki E, Furuichi K, Miyazaki Y. Quantification of brain perfusion SPECT with N-isopropyl-p-iodoamphetamine using noninvasive microsphere method: estimation of arterial input by dynamic imaging. Kaku igaku Japanese J Nucl Med. 1997;34:901–8. Yonekura Y, Sugihara H, Taniguchi Y, Aoki E, Furuichi K, Miyazaki Y. Quantification of brain perfusion SPECT with N-isopropyl-p-iodoamphetamine using noninvasive microsphere method: estimation of arterial input by dynamic imaging. Kaku igaku Japanese J Nucl Med. 1997;34:901–8.
11.
go back to reference Fang YHD, Muzic RF. Spillover and partial-volume correction for image-derived input functions for small-animal F-18-FDG PET studies. J Nucl Med. 2008;49:606–14.CrossRefPubMed Fang YHD, Muzic RF. Spillover and partial-volume correction for image-derived input functions for small-animal F-18-FDG PET studies. J Nucl Med. 2008;49:606–14.CrossRefPubMed
12.
go back to reference Andrew BH, Benjamin LF, Grant TG, Bruce HH. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals. Phys Med Biol. 2008;53:2233.CrossRef Andrew BH, Benjamin LF, Grant TG, Bruce HH. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals. Phys Med Biol. 2008;53:2233.CrossRef
Metadata
Title
Noninvasive quantitation of rat cerebral blood flow using 99mTc-HMPAO—assessment of input function with dynamic chest planar imaging
Authors
Chie Suzuki
Mutsumi Kosugi
Yasuhiro Magata
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2018
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-018-0375-7

Other articles of this Issue 1/2018

EJNMMI Research 1/2018 Go to the issue