Skip to main content
Top
Published in: EJNMMI Research 1/2017

Open Access 01-12-2017 | Editorial

Fluorine-18 fluorodeoxyglucose positron emission tomography for cardiac sarcoidosis—is it time to consider a new radiotracer?

Authors: Georgios Christopoulos, Panithaya Chareonthaitawee

Published in: EJNMMI Research | Issue 1/2017

Login to get access

Excerpt

Cardiac fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) is increasingly used for detecting cardiac involvement and assessing the presence and severity of myocardial inflammation in sarcoidosis [1]. Numerous reports have highlighted the usefulness of 18F-FDG PET in improving the ability to identify and treat patients with this disease, and several societies now incorporate cardiac 18F-FDG PET findings as a diagnostic criterion for cardiac sarcoidosis [1]. Despite its increasing use, cardiac 18F-FDG PET has several limitations in identifying cardiac sarcoidosis. The main drawback relates to physiologic myocardial 18F-FDG uptake, which may occur under normal resting conditions in unaffected myocardium and poses challenges for the assessment of myocardial inflammation by 18F-FDG PET. Several approaches to suppress physiologic myocardial glucose uptake have been proposed. The majority advocate dietary preparations which include restricting carbohydrate intake while promoting high-fat consumption, prolonged fasting, heparin administration, or a combination of these approaches. However, a number of studies have demonstrated that, even with these approaches, physiologic uptake may not be completely suppressed. The reasons are multifold. First, low-carbohydrate, high-fat diets are very difficult to follow, and ensuring compliance is particularly problematic [24]. Second, it is virtually impossible to completely eliminate carbohydrate intake from the diet. Third, even in the absence of carbohydrate ingestion, glucose metabolism is active in tissues with high concentrations of glycogen, such as the myocardium. With respect to heparin administration in an effort to increase free fatty acid availability and suppress glucose metabolism [5], the majority of the studies demonstrate suppression of physiologic uptake with heparin use [59], although two studies suggest the converse [10, 11]. Heparin administration is also associated with increased bleeding risk and may not be appropriate in some patients. Another limiting factor to the use of 18F-FDG for assessment of cardiac sarcoidosis is that both inflammation and myocardial ischemia can increase glucose utilization and can further reduce the specificity of myocardial 18F-FDG uptake. Thus, an alternative tracer that does not require complicated dietary or fasting preparations and that has less nonspecific myocardial uptake would be highly useful for cardiac sarcoidosis. 3′-deoxy-3′-18F-fluorothymidine (18F-FLT), a promising PET tracer for evaluating tumor proliferative activity, has potential in this regard but has not yet been investigated in a systematic manner. In contrast to 18F-FDG, 18F-FLT uptake in normal myocardium is low even without prolonged fasting and/or a special diet prior to imaging. …
Literature
1.
go back to reference Chareonthaitawee P, Beanlands RS, Chen W, et al. Joint SNMMI-ASNC expert consensus document on the role of 18F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Cardiol. 2017. doi:10.1007/s12350-017-0978-9. Chareonthaitawee P, Beanlands RS, Chen W, et al. Joint SNMMI-ASNC expert consensus document on the role of 18F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Cardiol. 2017. doi:10.​1007/​s12350-017-0978-9.
2.
4.
go back to reference Soussan M, Brillet PY, Nunes H, et al. Clinical value of a high-fat and low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. J Nucl Cardiol. 2013;20(1):120–7. doi:10.1007/s12350-012-9653-3.CrossRefPubMed Soussan M, Brillet PY, Nunes H, et al. Clinical value of a high-fat and low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. J Nucl Cardiol. 2013;20(1):120–7. doi:10.​1007/​s12350-012-9653-3.CrossRefPubMed
5.
go back to reference Giorgetti A, Marras G, Genovesi D, et al. Effect of prolonged fasting and low molecular weight heparin or warfarin therapies on 2-deoxy-2-[18F]-fluoro-D-glucose PET cardiac uptake. J Nucl Cardiol. 2017. doi:10.1007/s12350-017-0800-8. Giorgetti A, Marras G, Genovesi D, et al. Effect of prolonged fasting and low molecular weight heparin or warfarin therapies on 2-deoxy-2-[18F]-fluoro-D-glucose PET cardiac uptake. J Nucl Cardiol. 2017. doi:10.​1007/​s12350-017-0800-8.
6.
go back to reference Scholtens AM, Verberne HJ, Budde RP, et al. Additional heparin preadministration improves cardiac glucose metabolism suppression over low-carbohydrate diet alone in (1)(8)F-FDG PET imaging. J Nucl Med. 2016;57(4):568–73. doi:10.2967/jnumed.115.166884.CrossRefPubMed Scholtens AM, Verberne HJ, Budde RP, et al. Additional heparin preadministration improves cardiac glucose metabolism suppression over low-carbohydrate diet alone in (1)(8)F-FDG PET imaging. J Nucl Med. 2016;57(4):568–73. doi:10.​2967/​jnumed.​115.​166884.CrossRefPubMed
8.
10.
go back to reference Gormsen LC, Christensen NL, Bendstrup E, et al. Complete somatostatin-induced insulin suppression combined with heparin loading does not significantly suppress myocardial 18F-FDG uptake in patients with suspected cardiac sarcoidosis. J Nucl Cardiol. 2013;20(6):1108–15. doi:10.1007/s12350-013-9798-8.CrossRefPubMed Gormsen LC, Christensen NL, Bendstrup E, et al. Complete somatostatin-induced insulin suppression combined with heparin loading does not significantly suppress myocardial 18F-FDG uptake in patients with suspected cardiac sarcoidosis. J Nucl Cardiol. 2013;20(6):1108–15. doi:10.​1007/​s12350-013-9798-8.CrossRefPubMed
11.
go back to reference Manabe O, Yoshinaga K, Ohira H, et al. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial (18)F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J Nucl Cardiol. 2016;23(2):244–52. doi:10.1007/s12350-015-0226-0.CrossRefPubMed Manabe O, Yoshinaga K, Ohira H, et al. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial (18)F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J Nucl Cardiol. 2016;23(2):244–52. doi:10.​1007/​s12350-015-0226-0.CrossRefPubMed
12.
go back to reference Norikane T, Yamamoto Y, Maeda Y, et al. Comparative evaluation of 18F-FLT and 18F-FDG for detecting cardiac and extra-cardiac horacic involvement in patients with newly diagnosed sarcoidosis. EJNMMI Research 2017;in press. Norikane T, Yamamoto Y, Maeda Y, et al. Comparative evaluation of 18F-FLT and 18F-FDG for detecting cardiac and extra-cardiac horacic involvement in patients with newly diagnosed sarcoidosis. EJNMMI Research 2017;in press.
13.
go back to reference Zhao S, Kuge Y, Kohanawa M, et al. Usefulness of 11C-methionine for differentiating tumors from granulomas in experimental rat models: a comparison with 18F-FDG and 18F-FLT. J Nuclear Med. 2008;49(1):135–41. doi:10.2967/jnumed.107.044578.CrossRef Zhao S, Kuge Y, Kohanawa M, et al. Usefulness of 11C-methionine for differentiating tumors from granulomas in experimental rat models: a comparison with 18F-FDG and 18F-FLT. J Nuclear Med. 2008;49(1):135–41. doi:10.​2967/​jnumed.​107.​044578.CrossRef
Metadata
Title
Fluorine-18 fluorodeoxyglucose positron emission tomography for cardiac sarcoidosis—is it time to consider a new radiotracer?
Authors
Georgios Christopoulos
Panithaya Chareonthaitawee
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2017
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-017-0322-z

Other articles of this Issue 1/2017

EJNMMI Research 1/2017 Go to the issue