Skip to main content
Top
Published in: EJNMMI Research 1/2017

Open Access 01-12-2017 | Original research

Pharmacokinetics, microscale distribution, and dosimetry of alpha-emitter-labeled anti-PD-L1 antibodies in an immune competent transgenic breast cancer model

Authors: Jessie R. Nedrow, Anders Josefsson, Sunju Park, Tom Bäck, Robert F. Hobbs, Cory Brayton, Frank Bruchertseifer, Alfred Morgenstern, George Sgouros

Published in: EJNMMI Research | Issue 1/2017

Login to get access

Abstract

Background

Studies combining immune checkpoint inhibitors with external beam radiation have shown a therapeutic advantage over each modality alone. The purpose of these works is to evaluate the potential of targeted delivery of high LET radiation to the tumor microenvironment via an immune checkpoint inhibitor.

Methods

The impact of protein concentration on the distribution of 111In-DTPA-anti-PD-L1-BC, an 111In-antibody conjugate targeted to PD-L1, was evaluated in an immunocompetent mouse model of breast cancer. 225Ac-DOTA-anti-PD-L1-BC was evaluated by both macroscale (ex vivo biodistribution) and microscale (alpha-camera images at a protein concentration determined by the 111In data.

Results

The evaluation of 111In-DTPA-anti-PD-L1-BC at 1, 3, and 10 mg/kg highlighted the impact of protein concentration on the distribution of the labeled antibody, particularly in the blood, spleen, thymus, and tumor. Alpha-camera images for the microscale distribution of 225Ac-DOTA-anti-PD-L1-BC showed a uniform distribution in the liver while highly non-uniform distributions were obtained in the thymus, spleen, kidney, and tumor. At an antibody dose of 3 mg/kg, the liver was dose-limiting with an absorbed dose of 738 mGy/kBq; based upon blood activity concentration measurements, the marrow absorbed dose was 29 mGy/kBq.

Conclusions

These studies demonstrate that 225Ac-DOTA-anti-PD-L1-BC is capable of delivering high LET radiation to PD-L1 tumors. The use of a surrogate SPECT agent, 111In-DTPA-anti-PD-L1-BC, is beneficial in optimizing the dose delivered to the tumor sites. Furthermore, an accounting of the microscale distribution of the antibody in preclinical studies was essential to the proper interpretation of organ absorbed doses and their likely relation to biologic effect.
Literature
1.
go back to reference Lipson EJ, Forde PM, Hammers HJ, Emens LA, Taube JM, Topalian SL. Antagonists of PD-1 and PD-L1 in cancer treatment. Semin Oncol. 2015;42(4):587–600.CrossRefPubMedPubMedCentral Lipson EJ, Forde PM, Hammers HJ, Emens LA, Taube JM, Topalian SL. Antagonists of PD-1 and PD-L1 in cancer treatment. Semin Oncol. 2015;42(4):587–600.CrossRefPubMedPubMedCentral
2.
go back to reference Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.CrossRefPubMedPubMedCentral Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.CrossRefPubMedPubMedCentral
3.
go back to reference Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.CrossRefPubMedPubMedCentral Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.CrossRefPubMedPubMedCentral
4.
go back to reference Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.CrossRefPubMed Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.CrossRefPubMed
5.
go back to reference Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5(12):1365–9.CrossRefPubMed Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5(12):1365–9.CrossRefPubMed
6.
go back to reference Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34.CrossRefPubMedPubMedCentral Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34.CrossRefPubMedPubMedCentral
7.
go back to reference Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med. 2003;9(5):562–7.CrossRefPubMed Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med. 2003;9(5):562–7.CrossRefPubMed
8.
go back to reference Ishida M, Iwai Y, Tanaka Y, Okazaki T, Freeman GJ, Minato N, et al. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol Lett. 2002;84(1):57–62.CrossRefPubMed Ishida M, Iwai Y, Tanaka Y, Okazaki T, Freeman GJ, Minato N, et al. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol Lett. 2002;84(1):57–62.CrossRefPubMed
9.
go back to reference Rodriguez-Ruiz ME, Rodriguez I, Garasa S, Barbes B, Solorzano JL, Perez-Gracia JL, et al. Abscopal effects of radiotherapy are enhanced by combined immunostimulatory mAbs and are dependent on CD8 T cells and crosspriming. Cancer Res. 2016;76(20):5994–6005.CrossRefPubMed Rodriguez-Ruiz ME, Rodriguez I, Garasa S, Barbes B, Solorzano JL, Perez-Gracia JL, et al. Abscopal effects of radiotherapy are enhanced by combined immunostimulatory mAbs and are dependent on CD8 T cells and crosspriming. Cancer Res. 2016;76(20):5994–6005.CrossRefPubMed
10.
go back to reference Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014;74(19):5458–68.CrossRefPubMed Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014;74(19):5458–68.CrossRefPubMed
11.
go back to reference He J, Hu Y, Hu M, Li B. Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep. 2015;5:13110.CrossRefPubMedPubMedCentral He J, Hu Y, Hu M, Li B. Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep. 2015;5:13110.CrossRefPubMedPubMedCentral
12.
go back to reference Blankenberg FG, Levashova Z, Goris MG, Hamby CV, Backer MV, Backer JM. Targeted systemic radiotherapy with scVEGF/177Lu leads to sustained disruption of the tumor vasculature and intratumoral apoptosis. J Nucl Med. 2011;52(10):1630–7.CrossRefPubMed Blankenberg FG, Levashova Z, Goris MG, Hamby CV, Backer MV, Backer JM. Targeted systemic radiotherapy with scVEGF/177Lu leads to sustained disruption of the tumor vasculature and intratumoral apoptosis. J Nucl Med. 2011;52(10):1630–7.CrossRefPubMed
13.
go back to reference Bandekar A, Zhu C, Jindal R, Bruchertseifer F, Morgenstern A, Sofou S. Anti-prostate-specific membrane antigen liposomes loaded with 225Ac for potential targeted antivascular alpha-particle therapy of cancer. J Nucl Med. 2014;55(1):107–14.CrossRefPubMed Bandekar A, Zhu C, Jindal R, Bruchertseifer F, Morgenstern A, Sofou S. Anti-prostate-specific membrane antigen liposomes loaded with 225Ac for potential targeted antivascular alpha-particle therapy of cancer. J Nucl Med. 2014;55(1):107–14.CrossRefPubMed
14.
go back to reference Li L, Wartchow CA, Danthi SN, Shen Z, Dechene N, Pease J, et al. A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. Int J Radiat Oncol Biol Phys. 2004;58(4):1215–27.CrossRefPubMed Li L, Wartchow CA, Danthi SN, Shen Z, Dechene N, Pease J, et al. A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. Int J Radiat Oncol Biol Phys. 2004;58(4):1215–27.CrossRefPubMed
15.
go back to reference Chopra A. 188Re-labeled humanized monoclonal anti-epidermal growth factor receptor antibody. Rockville: Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD); 2004. Chopra A. 188Re-labeled humanized monoclonal anti-epidermal growth factor receptor antibody. Rockville: Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD); 2004.
16.
go back to reference Chopra A. 177Lu-labeled humanized monoclonal antibody against human epidermal growth factor receptor 2. Rockville: Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD); 2004. Chopra A. 177Lu-labeled humanized monoclonal antibody against human epidermal growth factor receptor 2. Rockville: Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD); 2004.
17.
go back to reference Vallabhajosula S, Nikolopoulou A, Jhanwar YS, Kaur G, Tagawa ST, Nanus DM, et al. Radioimmunotherapy of metastatic prostate cancer with (1)(7)(7)Lu-DOTAhuJ591 anti prostate specific membrane antigen specific monoclonal antibody. Curr Radiopharm. 2016;9(1):44–53.CrossRefPubMed Vallabhajosula S, Nikolopoulou A, Jhanwar YS, Kaur G, Tagawa ST, Nanus DM, et al. Radioimmunotherapy of metastatic prostate cancer with (1)(7)(7)Lu-DOTAhuJ591 anti prostate specific membrane antigen specific monoclonal antibody. Curr Radiopharm. 2016;9(1):44–53.CrossRefPubMed
18.
go back to reference Song H, Shahverdi K, Huso DL, Esaias C, Fox J, Liedy A, et al. 213Bi (alpha-emitter)-antibody targeting of breast cancer metastases in the neu-N transgenic mouse model. Cancer Res. 2008;68(10):3873–80.CrossRefPubMedPubMedCentral Song H, Shahverdi K, Huso DL, Esaias C, Fox J, Liedy A, et al. 213Bi (alpha-emitter)-antibody targeting of breast cancer metastases in the neu-N transgenic mouse model. Cancer Res. 2008;68(10):3873–80.CrossRefPubMedPubMedCentral
19.
go back to reference Song H, Hobbs RF, Vajravelu R, Huso DL, Esaias C, Apostolidis C, et al. Radioimmunotherapy of breast cancer metastases with alpha-particle emitter 225Ac: comparing efficacy with 213Bi and 90Y. Cancer Res. 2009;69(23):8941–8.CrossRefPubMedPubMedCentral Song H, Hobbs RF, Vajravelu R, Huso DL, Esaias C, Apostolidis C, et al. Radioimmunotherapy of breast cancer metastases with alpha-particle emitter 225Ac: comparing efficacy with 213Bi and 90Y. Cancer Res. 2009;69(23):8941–8.CrossRefPubMedPubMedCentral
20.
go back to reference Josefsson A, Nedrow JR, Park S, Banerjee SR, Rittenbach A, Jammes F, et al. Imaging, biodistribution, and dosimetry of radionuclide-labeled PD-L1 antibody in an immunocompetent mouse model of breast cancer. Cancer Res. 2016;76(2):472–9.CrossRefPubMed Josefsson A, Nedrow JR, Park S, Banerjee SR, Rittenbach A, Jammes F, et al. Imaging, biodistribution, and dosimetry of radionuclide-labeled PD-L1 antibody in an immunocompetent mouse model of breast cancer. Cancer Res. 2016;76(2):472–9.CrossRefPubMed
21.
go back to reference Apostolidis C, Molinet R, Rasmussen G, Morgenstern A. Production of Ac-225 from Th-229 for targeted alpha therapy. Anal Chem. 2005;77(19):6288–91.CrossRefPubMed Apostolidis C, Molinet R, Rasmussen G, Morgenstern A. Production of Ac-225 from Th-229 for targeted alpha therapy. Anal Chem. 2005;77(19):6288–91.CrossRefPubMed
22.
go back to reference Zielinska B, Apostolidis C, Bruchertseifer F, Morgenstern A. An improved method for the production of Ac-225/Bi-213 from Th-229 for targeted alpha therapy. Solvent Extr Ion Exch. 2007;25(3):339–49.CrossRef Zielinska B, Apostolidis C, Bruchertseifer F, Morgenstern A. An improved method for the production of Ac-225/Bi-213 from Th-229 for targeted alpha therapy. Solvent Extr Ion Exch. 2007;25(3):339–49.CrossRef
23.
go back to reference Brechbiel MW, Gansow OA. Synthesis of C-functionalized trans-cyclohexyldiethylenetriaminepenta-acetic acids for labeling of monoclonal antibodies with bismuth-212 alpha-particle emitter. J Chem Soc Perkin Trans I. 1992;1:1173–8.CrossRef Brechbiel MW, Gansow OA. Synthesis of C-functionalized trans-cyclohexyldiethylenetriaminepenta-acetic acids for labeling of monoclonal antibodies with bismuth-212 alpha-particle emitter. J Chem Soc Perkin Trans I. 1992;1:1173–8.CrossRef
24.
go back to reference Brechbiel MW. Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging. 2008;52(2):166–73.PubMed Brechbiel MW. Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging. 2008;52(2):166–73.PubMed
25.
go back to reference Reilly RT, Gottlieb MBC, Ercolini AM, Machiels JPH, Kane CE, Okoye FI, et al. HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice. Cancer Res. 2000;60(13):3569–76.PubMed Reilly RT, Gottlieb MBC, Ercolini AM, Machiels JPH, Kane CE, Okoye FI, et al. HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice. Cancer Res. 2000;60(13):3569–76.PubMed
26.
go back to reference Reilly RT, Machiels JPH, Emens LA, Ercolini AM, Okoye FI, Lei RY, et al. The collaboration of both humoral and cellular HER-2/neu-targeted immune responses is required for the complete eradication of HER-2/neu-expressing tumors. Cancer Res. 2001;61(3):880–3.PubMed Reilly RT, Machiels JPH, Emens LA, Ercolini AM, Okoye FI, Lei RY, et al. The collaboration of both humoral and cellular HER-2/neu-targeted immune responses is required for the complete eradication of HER-2/neu-expressing tumors. Cancer Res. 2001;61(3):880–3.PubMed
27.
go back to reference Nedrow JR, Latoche JD, Day KE, Modi J, Ganguly T, Zeng D, et al. Targeting PSMA with a Cu-64 labeled phosphoramidate inhibitor for PET/CT imaging of variant PSMA-expressing xenografts in mouse models of prostate cancer. Mol Imaging Biol. 2016;18(3):402–10.CrossRefPubMed Nedrow JR, Latoche JD, Day KE, Modi J, Ganguly T, Zeng D, et al. Targeting PSMA with a Cu-64 labeled phosphoramidate inhibitor for PET/CT imaging of variant PSMA-expressing xenografts in mouse models of prostate cancer. Mol Imaging Biol. 2016;18(3):402–10.CrossRefPubMed
28.
go back to reference Beaino W, Nedrow JR, Anderson CJ. Evaluation of (68)Ga- and (177)Lu-DOTA-PEG4-LLP2A for VLA-4-targeted PET imaging and treatment of metastatic melanoma. Mol Pharm. 2015;12(6):1929–38.CrossRefPubMedPubMedCentral Beaino W, Nedrow JR, Anderson CJ. Evaluation of (68)Ga- and (177)Lu-DOTA-PEG4-LLP2A for VLA-4-targeted PET imaging and treatment of metastatic melanoma. Mol Pharm. 2015;12(6):1929–38.CrossRefPubMedPubMedCentral
29.
go back to reference Back T, Jacobsson L. The alpha-camera: a quantitative digital autoradiography technique using a charge-coupled device for ex vivo high-resolution bioimaging of alpha-particles. J Nucl Med. 2010;51(10):1616–23.CrossRefPubMed Back T, Jacobsson L. The alpha-camera: a quantitative digital autoradiography technique using a charge-coupled device for ex vivo high-resolution bioimaging of alpha-particles. J Nucl Med. 2010;51(10):1616–23.CrossRefPubMed
30.
go back to reference Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry—standardization of nomenclature. J Nucl Med. 2009;50(3):477–84.CrossRefPubMed Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry—standardization of nomenclature. J Nucl Med. 2009;50(3):477–84.CrossRefPubMed
31.
32.
go back to reference Hobbs RF, Song H, Huso DL, Sundel MH, Sgouros G. A nephron-based model of the kidneys for macro-to-micro alpha-particle dosimetry. Phys Med Biol. 2012;57(13):4403–24.CrossRefPubMedPubMedCentral Hobbs RF, Song H, Huso DL, Sundel MH, Sgouros G. A nephron-based model of the kidneys for macro-to-micro alpha-particle dosimetry. Phys Med Biol. 2012;57(13):4403–24.CrossRefPubMedPubMedCentral
33.
go back to reference Bowdler AJ. The complete spleen structure, function and clinical disorders. Totowa: Humana Press Inc; 2002.CrossRef Bowdler AJ. The complete spleen structure, function and clinical disorders. Totowa: Humana Press Inc; 2002.CrossRef
34.
go back to reference Dawson LA, Kavanagh BD, Paulino AC, Das SK, Miften M, Li XA, et al. Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S108–15.CrossRefPubMed Dawson LA, Kavanagh BD, Paulino AC, Das SK, Miften M, Li XA, et al. Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S108–15.CrossRefPubMed
35.
go back to reference Pan CC, Kavanagh BD, Dawson LA, Li XA, Das SK, Miften M, et al. Radiation-associated liver injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S94–100.CrossRefPubMedPubMedCentral Pan CC, Kavanagh BD, Dawson LA, Li XA, Das SK, Miften M, et al. Radiation-associated liver injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S94–100.CrossRefPubMedPubMedCentral
36.
go back to reference Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med. 1993;34(4):689–94.PubMed Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med. 1993;34(4):689–94.PubMed
37.
go back to reference O’Donoghue JA, Baidoo N, Deland D, Welt S, Divgi CR, Sgouros G. Hematologic toxicity in radioimmunotherapy: dose-response relationships for I-131 labeled antibody therapy. Cancer Biother Radiopharm. 2002;17(4):435–43.CrossRefPubMed O’Donoghue JA, Baidoo N, Deland D, Welt S, Divgi CR, Sgouros G. Hematologic toxicity in radioimmunotherapy: dose-response relationships for I-131 labeled antibody therapy. Cancer Biother Radiopharm. 2002;17(4):435–43.CrossRefPubMed
38.
go back to reference Sgouros G, Graham MC, Divgi CR, Larson SM, Scheinberg DA. Modeling and dosimetry of monoclonal antibody M195 (anti-CD33) in acute myelogenous leukemia. J Nucl Med. 1993;34(3):422–30.PubMed Sgouros G, Graham MC, Divgi CR, Larson SM, Scheinberg DA. Modeling and dosimetry of monoclonal antibody M195 (anti-CD33) in acute myelogenous leukemia. J Nucl Med. 1993;34(3):422–30.PubMed
39.
go back to reference Scheinberg DA, Lovett D, Divgi CR, Graham MC, Berman E, Pentlow K, et al. A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide. J Clin Oncol. 1991;9(3):478–90.CrossRefPubMed Scheinberg DA, Lovett D, Divgi CR, Graham MC, Berman E, Pentlow K, et al. A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide. J Clin Oncol. 1991;9(3):478–90.CrossRefPubMed
40.
go back to reference Junghans RP, Sgouros G, Scheinberg DA, Chabner BA, Longo DL. Antibody-based immunotherapies of cancer. Cancer chemotherapy and biotherapy. Philadelphia: Lippincott-Raven Publishers; 1996. p. 655–89. Junghans RP, Sgouros G, Scheinberg DA, Chabner BA, Longo DL. Antibody-based immunotherapies of cancer. Cancer chemotherapy and biotherapy. Philadelphia: Lippincott-Raven Publishers; 1996. p. 655–89.
41.
go back to reference Pan MH, Gao DW, Feng J, He J, Seo Y, Tedesco J, et al. Biodistributions of 177Lu- and 111In-labeled 7E11 antibodies to prostate-specific membrane antigen in xenograft model of prostate cancer and potential use of 111In-7E11 as a pre-therapeutic agent for 177Lu-7E11 radioimmunotherapy. Mol Imaging Biol. 2009;11(3):159–66.CrossRefPubMed Pan MH, Gao DW, Feng J, He J, Seo Y, Tedesco J, et al. Biodistributions of 177Lu- and 111In-labeled 7E11 antibodies to prostate-specific membrane antigen in xenograft model of prostate cancer and potential use of 111In-7E11 as a pre-therapeutic agent for 177Lu-7E11 radioimmunotherapy. Mol Imaging Biol. 2009;11(3):159–66.CrossRefPubMed
42.
go back to reference Josefsson A, Zhu C, Park S, Abou D, Song H, Huso D, Back T, Bruchertseifer F, Morgenstern A, Bolch WE, Sgouros G, Hobbs RF. Small scale renal dosimetry for alpha particle radiopharmaceutical therapy of metastatic breast cancer with 225Ac-7.16. 4. Int J Radiat Oncol. 2015;2015:S149.CrossRef Josefsson A, Zhu C, Park S, Abou D, Song H, Huso D, Back T, Bruchertseifer F, Morgenstern A, Bolch WE, Sgouros G, Hobbs RF. Small scale renal dosimetry for alpha particle radiopharmaceutical therapy of metastatic breast cancer with 225Ac-7.16. 4. Int J Radiat Oncol. 2015;2015:S149.CrossRef
43.
go back to reference Feinendegen LE, McClure JJ. Alpha-emitters for medical therapy: workshop of the United States Department of Energy: Denver, Colorado, May 30-31, 1996. Radiat Res. 1997;148(2):195–201.CrossRef Feinendegen LE, McClure JJ. Alpha-emitters for medical therapy: workshop of the United States Department of Energy: Denver, Colorado, May 30-31, 1996. Radiat Res. 1997;148(2):195–201.CrossRef
44.
go back to reference Lee E, Moon JW, Wang X, Kim C, Li S, Shin BK, et al. Genomic copy number signatures uncovered a genetically distinct group from adenocarcinoma and squamous cell carcinoma in non-small cell lung cancer. Hum Pathol. 2015;46(8):1111–20.CrossRefPubMed Lee E, Moon JW, Wang X, Kim C, Li S, Shin BK, et al. Genomic copy number signatures uncovered a genetically distinct group from adenocarcinoma and squamous cell carcinoma in non-small cell lung cancer. Hum Pathol. 2015;46(8):1111–20.CrossRefPubMed
45.
go back to reference Chatterjee S, Lesniak WG, Miller MS, Lisok A, Sikorska E, Wharram B, et al. Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem Biophys Res Commun. 2017;483(1):258–63.CrossRefPubMed Chatterjee S, Lesniak WG, Miller MS, Lisok A, Sikorska E, Wharram B, et al. Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem Biophys Res Commun. 2017;483(1):258–63.CrossRefPubMed
Metadata
Title
Pharmacokinetics, microscale distribution, and dosimetry of alpha-emitter-labeled anti-PD-L1 antibodies in an immune competent transgenic breast cancer model
Authors
Jessie R. Nedrow
Anders Josefsson
Sunju Park
Tom Bäck
Robert F. Hobbs
Cory Brayton
Frank Bruchertseifer
Alfred Morgenstern
George Sgouros
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2017
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-017-0303-2

Other articles of this Issue 1/2017

EJNMMI Research 1/2017 Go to the issue