Skip to main content
Top
Published in: EJNMMI Research 1/2017

Open Access 01-12-2017 | Original research

FLT-PET for early response evaluation of colorectal cancer patients with liver metastases: a prospective study

Authors: Marie Benzon Mogensen, Annika Loft, Marianne Aznar, Thomas Axelsen, Ben Vainer, Kell Osterlind, Andreas Kjaer

Published in: EJNMMI Research | Issue 1/2017

Login to get access

Abstract

Background

Fluoro-L-thymidine (FLT) is a positron emission tomography/computed tomography (PET/CT) tracer which reflects proliferative activity in a cancer lesion. The main objective of this prospective explorative study was to evaluate whether FLT-PET can be used for the early evaluation of treatment response in colorectal cancer patients (CRC) with liver metastases. Patients with metastatic CRC having at least one measurable (>1 cm) liver metastasis receiving first-line chemotherapy were included. A FLT-PET/CT scan was performed at baseline and after the first treatment. The maximum and mean standardised uptake values (SUVmax, SUVmean) were measured. After three cycles of chemotherapy, treatment response was assessed by CT scan based on RECIST 1.1.

Results

Thirty-nine consecutive patients were included of which 27 were evaluable. Dropout was mainly due to disease complications. Nineteen patients (70%) had a partial response, seven (26%) had stable disease and one (4%) had progressive disease. A total of 23 patients (85%) had a decrease in FLT uptake following the first treatment. The patient with progressive disease had the highest increase in FLT uptake in SUVmax. There was no correlation between the response according to RECIST and the early changes in FLT uptake measured as SUVmax (p = 0.24).

Conclusions

No correlation was found between early changes in FLT uptake after the first cycle of treatment and the response evaluated from subsequent CT scans. It seems unlikely that FLT-PET can be used on its own for the early response evaluation of metastatic CRC.
Literature
1.
go back to reference Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.CrossRefPubMed Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.CrossRefPubMed
2.
go back to reference Harry VN, Semple SI, Parkin DE, Gilbert FJ. Use of new imaging techniques to predict tumour response to therapy. Lancet Oncol. 2010;11:92–102.CrossRefPubMed Harry VN, Semple SI, Parkin DE, Gilbert FJ. Use of new imaging techniques to predict tumour response to therapy. Lancet Oncol. 2010;11:92–102.CrossRefPubMed
3.
go back to reference Pickles MD, Gibbs P, Lowry M, Turnbull LW. Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging. 2006;24:843–7.CrossRefPubMed Pickles MD, Gibbs P, Lowry M, Turnbull LW. Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging. 2006;24:843–7.CrossRefPubMed
4.
go back to reference Mudd SR, Holich KD, Voorbach MJ, et al. Pharmacodynamic evaluation of irinotecan therapy by FDG and FLT PET/CT imaging in a colorectal cancer xenograft model. Mol Imaging Biol. 2011;14:617–24. Mudd SR, Holich KD, Voorbach MJ, et al. Pharmacodynamic evaluation of irinotecan therapy by FDG and FLT PET/CT imaging in a colorectal cancer xenograft model. Mol Imaging Biol. 2011;14:617–24.
5.
go back to reference Chalkidou A, Landau DB, Odell EW, Cornelius VR, O’Doherty MJ, Marsden PK. Correlation between Ki-67 immunohistochemistry and 18 F-fluorothymidine uptake in patients with cancer: a systematic review and meta-analysis. Eur J Cancer. 2012;48:3499–513.CrossRefPubMed Chalkidou A, Landau DB, Odell EW, Cornelius VR, O’Doherty MJ, Marsden PK. Correlation between Ki-67 immunohistochemistry and 18 F-fluorothymidine uptake in patients with cancer: a systematic review and meta-analysis. Eur J Cancer. 2012;48:3499–513.CrossRefPubMed
6.
go back to reference Been LB, Suurmeijer AJ, Cobben DC, Jager PL, Hoekstra HJ, Elsinga PH. [18 F] FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging. 2004;31:1659–72.CrossRefPubMed Been LB, Suurmeijer AJ, Cobben DC, Jager PL, Hoekstra HJ, Elsinga PH. [18 F] FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging. 2004;31:1659–72.CrossRefPubMed
7.
go back to reference Nielsen CH, Jensen MM, Kristensen LK, et al. In vivo imaging of therapy response to a novel pan-HER antibody mixture using FDG and FLT positron emission tomography. Oncotarget. 2015;6:37486–99.PubMedPubMedCentral Nielsen CH, Jensen MM, Kristensen LK, et al. In vivo imaging of therapy response to a novel pan-HER antibody mixture using FDG and FLT positron emission tomography. Oncotarget. 2015;6:37486–99.PubMedPubMedCentral
8.
go back to reference Johnbeck CB, Munk JM, Haagen NC, Fisker Hag AM, Knigge U, Kjaer A. 18 F-FDG and 18 F-FLT-PET imaging for monitoring everolimus effect on tumor-growth in neuroendocrine tumors: studies in human tumor xenografts in mice. PLoS One. 2014;9:e91387.CrossRefPubMed Johnbeck CB, Munk JM, Haagen NC, Fisker Hag AM, Knigge U, Kjaer A. 18 F-FDG and 18 F-FLT-PET imaging for monitoring everolimus effect on tumor-growth in neuroendocrine tumors: studies in human tumor xenografts in mice. PLoS One. 2014;9:e91387.CrossRefPubMed
9.
go back to reference Munk JM, Erichsen KD, Bjorkling F, et al. Imaging of treatment response to the combination of carboplatin and paclitaxel in human ovarian cancer xenograft tumors in mice using FDG and FLT PET. PLoS One. 2013;8:e85126.CrossRef Munk JM, Erichsen KD, Bjorkling F, et al. Imaging of treatment response to the combination of carboplatin and paclitaxel in human ovarian cancer xenograft tumors in mice using FDG and FLT PET. PLoS One. 2013;8:e85126.CrossRef
10.
go back to reference Jensen MM, Erichsen KD, Johnbeck CB, et al. [18F] FDG and [18F] FLT positron emission tomography imaging following treatment with belinostat in human ovary cancer xenografts in mice. BMC Cancer. 2013;13:168.CrossRefPubMedPubMedCentral Jensen MM, Erichsen KD, Johnbeck CB, et al. [18F] FDG and [18F] FLT positron emission tomography imaging following treatment with belinostat in human ovary cancer xenografts in mice. BMC Cancer. 2013;13:168.CrossRefPubMedPubMedCentral
12.
go back to reference Kemeny N. Presurgical chemotherapy in patients being considered for liver resection. Oncologist. 2007;12:825–39.CrossRefPubMed Kemeny N. Presurgical chemotherapy in patients being considered for liver resection. Oncologist. 2007;12:825–39.CrossRefPubMed
13.
go back to reference Leyton J, Smith G, Lees M, et al. Noninvasive imaging of cell proliferation following mitogenic extracellular kinase inhibition by PD0325901. Mol Cancer Ther. 2008;7:3112–21.CrossRefPubMed Leyton J, Smith G, Lees M, et al. Noninvasive imaging of cell proliferation following mitogenic extracellular kinase inhibition by PD0325901. Mol Cancer Ther. 2008;7:3112–21.CrossRefPubMed
14.
go back to reference Na YS, Jung KA, Kim SM, et al. The histone deacetylase inhibitor PXD101 increases the efficacy of irinotecan in in vitro and in vivo colon cancer models. Cancer Chemother Pharmacol. 2011;68:389–98.CrossRefPubMed Na YS, Jung KA, Kim SM, et al. The histone deacetylase inhibitor PXD101 increases the efficacy of irinotecan in in vitro and in vivo colon cancer models. Cancer Chemother Pharmacol. 2011;68:389–98.CrossRefPubMed
15.
go back to reference Lee SJ, Kang HY, Kim SY, et al. Early assessment of tumor response to JAC106, an anti-tubulin agent, by 3′-deoxy-3′-[(1)(8)F] fluorothymidine in preclinical tumor models. Eur J Nucl Med Mol Imaging. 2011;38:1436–48.CrossRefPubMed Lee SJ, Kang HY, Kim SY, et al. Early assessment of tumor response to JAC106, an anti-tubulin agent, by 3′-deoxy-3′-[(1)(8)F] fluorothymidine in preclinical tumor models. Eur J Nucl Med Mol Imaging. 2011;38:1436–48.CrossRefPubMed
16.
go back to reference McKinley ET, Smith RA, Zhao P, et al. 3′-Deoxy-3′-18 F-fluorothymidine PET predicts response to (V600E)BRAF-targeted therapy in preclinical models of colorectal cancer. J Nucl Med. 2013;54:424–30.CrossRefPubMedPubMedCentral McKinley ET, Smith RA, Zhao P, et al. 3′-Deoxy-3′-18 F-fluorothymidine PET predicts response to (V600E)BRAF-targeted therapy in preclinical models of colorectal cancer. J Nucl Med. 2013;54:424–30.CrossRefPubMedPubMedCentral
17.
go back to reference Contractor K, Challapalli A, Tomasi G, et al. Imaging of cellular proliferation in liver metastasis by [18 F] fluorothymidine positron emission tomography: effect of therapy. Phys Med Biol. 2012;57:3419–33.CrossRefPubMed Contractor K, Challapalli A, Tomasi G, et al. Imaging of cellular proliferation in liver metastasis by [18 F] fluorothymidine positron emission tomography: effect of therapy. Phys Med Biol. 2012;57:3419–33.CrossRefPubMed
18.
go back to reference Hong YS, Kim HO, Kim KP, et al. 3′-Deoxy-3′-18 F-fluorothymidine PET for the early prediction of response to leucovorin, 5-fluorouracil, and oxaliplatin therapy in patients with metastatic colorectal cancer. J Nucl Med. 2013;54:1209–16.CrossRefPubMed Hong YS, Kim HO, Kim KP, et al. 3′-Deoxy-3′-18 F-fluorothymidine PET for the early prediction of response to leucovorin, 5-fluorouracil, and oxaliplatin therapy in patients with metastatic colorectal cancer. J Nucl Med. 2013;54:1209–16.CrossRefPubMed
19.
go back to reference Desar IM, Gilles R, van Herpen CM, et al. (18) F-FLT-PET for response evaluation of MEK inhibitor selumetinib (AZD6244, ARRY-142886) in patients with solid tumors. World J Nucl Med. 2012;11:65–9.CrossRefPubMedPubMedCentral Desar IM, Gilles R, van Herpen CM, et al. (18) F-FLT-PET for response evaluation of MEK inhibitor selumetinib (AZD6244, ARRY-142886) in patients with solid tumors. World J Nucl Med. 2012;11:65–9.CrossRefPubMedPubMedCentral
20.
go back to reference Chun YS, Vauthey JN, Boonsirikamchai P, et al. Association of computed tomography morphologic criteria with pathologic response and survival in patients treated with bevacizumab for colorectal liver metastases. JAMA. 2009;302:2338–44.CrossRefPubMedPubMedCentral Chun YS, Vauthey JN, Boonsirikamchai P, et al. Association of computed tomography morphologic criteria with pathologic response and survival in patients treated with bevacizumab for colorectal liver metastases. JAMA. 2009;302:2338–44.CrossRefPubMedPubMedCentral
21.
go back to reference Chung WS, Park MS, Shin SJ, et al. Response evaluation in patients with colorectal liver metastases: RECIST version 1.1 versus modified CT criteria. AJR Am J Roentgenol. 2012;199:809–15.CrossRefPubMed Chung WS, Park MS, Shin SJ, et al. Response evaluation in patients with colorectal liver metastases: RECIST version 1.1 versus modified CT criteria. AJR Am J Roentgenol. 2012;199:809–15.CrossRefPubMed
22.
go back to reference Oken MM, Creech RH, Tormey DC, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5:649–55.CrossRefPubMed Oken MM, Creech RH, Tormey DC, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5:649–55.CrossRefPubMed
23.
go back to reference Jensen MM, Erichsen KD, Bjorkling F, et al. Early detection of response to experimental chemotherapeutic Top216 with [18 F] FLT and [18 F] FDG PET in human ovary cancer xenografts in mice. PLoS One. 2010;5:e12965.CrossRefPubMedPubMedCentral Jensen MM, Erichsen KD, Bjorkling F, et al. Early detection of response to experimental chemotherapeutic Top216 with [18 F] FLT and [18 F] FDG PET in human ovary cancer xenografts in mice. PLoS One. 2010;5:e12965.CrossRefPubMedPubMedCentral
24.
go back to reference Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50S.CrossRefPubMedPubMedCentral Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50S.CrossRefPubMedPubMedCentral
25.
go back to reference Lee TS, Ahn SH, Moon BS, et al. Comparison of 18 F-FDG, 18 F-FET and 18 F-FLT for differentiation between tumor and inflammation in rats. Nucl Med Biol. 2009;36:681–6.CrossRefPubMed Lee TS, Ahn SH, Moon BS, et al. Comparison of 18 F-FDG, 18 F-FET and 18 F-FLT for differentiation between tumor and inflammation in rats. Nucl Med Biol. 2009;36:681–6.CrossRefPubMed
26.
go back to reference van Waarde A, Cobben DC, Suurmeijer AJ, et al. Selectivity of 18 F-FLT and 18 F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med. 2004;45:695–700.PubMed van Waarde A, Cobben DC, Suurmeijer AJ, et al. Selectivity of 18 F-FLT and 18 F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med. 2004;45:695–700.PubMed
27.
go back to reference Shen Y, Anderson A, Sinha R, Li Y. Joint modeling tumor burden and time to event data in oncology trials. Pharm Stat. 2014;13:286–93.CrossRefPubMed Shen Y, Anderson A, Sinha R, Li Y. Joint modeling tumor burden and time to event data in oncology trials. Pharm Stat. 2014;13:286–93.CrossRefPubMed
28.
go back to reference Tournigand C, Cervantes A, Figer A, et al. OPTIMOX1: a randomized study of FOLFOX4 or FOLFOX7 with oxaliplatin in a stop-and-Go fashion in advanced colorectal cancer––a GERCOR study. J Clin Oncol. 2006;24:394–400.CrossRefPubMed Tournigand C, Cervantes A, Figer A, et al. OPTIMOX1: a randomized study of FOLFOX4 or FOLFOX7 with oxaliplatin in a stop-and-Go fashion in advanced colorectal cancer––a GERCOR study. J Clin Oncol. 2006;24:394–400.CrossRefPubMed
29.
go back to reference Chibaudel B, Maindrault-Goebel F, Lledo G, et al. Can chemotherapy be discontinued in unresectable metastatic colorectal cancer? The GERCOR OPTIMOX2 Study. J Clin Oncol. 2009;27:5727–33.CrossRefPubMed Chibaudel B, Maindrault-Goebel F, Lledo G, et al. Can chemotherapy be discontinued in unresectable metastatic colorectal cancer? The GERCOR OPTIMOX2 Study. J Clin Oncol. 2009;27:5727–33.CrossRefPubMed
30.
go back to reference Stremitzer S, Stift J, Singh J, et al. Histological response, pattern of tumor destruction and clinical outcome after neoadjuvant chemotherapy including bevacizumab or cetuximab in patients undergoing liver resection for colorectal liver metastases. Eur J Surg Oncol. 2015;41:868–74.CrossRefPubMed Stremitzer S, Stift J, Singh J, et al. Histological response, pattern of tumor destruction and clinical outcome after neoadjuvant chemotherapy including bevacizumab or cetuximab in patients undergoing liver resection for colorectal liver metastases. Eur J Surg Oncol. 2015;41:868–74.CrossRefPubMed
31.
go back to reference Corroyer-Dulmont A, Peres EA, Petit E, et al. Detection of glioblastoma response to temozolomide combined with bevacizumab based on muMRI and muPET imaging reveals [18 F]-fluoro-L-thymidine as an early and robust predictive marker for treatment efficacy. Neuro Oncol. 2013;15:41–56.CrossRefPubMed Corroyer-Dulmont A, Peres EA, Petit E, et al. Detection of glioblastoma response to temozolomide combined with bevacizumab based on muMRI and muPET imaging reveals [18 F]-fluoro-L-thymidine as an early and robust predictive marker for treatment efficacy. Neuro Oncol. 2013;15:41–56.CrossRefPubMed
32.
go back to reference Perumal M, Pillai RG, Barthel H, et al. Redistribution of nucleoside transporters to the cell membrane provides a novel approach for imaging thymidylate synthase inhibition by positron emission tomography. Cancer Res. 2006;66:8558–64.CrossRefPubMed Perumal M, Pillai RG, Barthel H, et al. Redistribution of nucleoside transporters to the cell membrane provides a novel approach for imaging thymidylate synthase inhibition by positron emission tomography. Cancer Res. 2006;66:8558–64.CrossRefPubMed
33.
go back to reference Jensen MM, Kjaer A. Monitoring of anti-cancer treatment with (18)F-FDG and (18)F-FLT PET: a comprehensive review of pre-clinical studies. Am J Nucl Med Mol Imaging. 2015;5:431–56.PubMedPubMedCentral Jensen MM, Kjaer A. Monitoring of anti-cancer treatment with (18)F-FDG and (18)F-FLT PET: a comprehensive review of pre-clinical studies. Am J Nucl Med Mol Imaging. 2015;5:431–56.PubMedPubMedCentral
Metadata
Title
FLT-PET for early response evaluation of colorectal cancer patients with liver metastases: a prospective study
Authors
Marie Benzon Mogensen
Annika Loft
Marianne Aznar
Thomas Axelsen
Ben Vainer
Kell Osterlind
Andreas Kjaer
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2017
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-017-0302-3

Other articles of this Issue 1/2017

EJNMMI Research 1/2017 Go to the issue