Skip to main content
Top
Published in: EJNMMI Research 1/2016

Open Access 01-12-2016 | Original research

Calibration of PET/CT scanners for multicenter studies on differentiated thyroid cancer with 124I

Authors: Jakob W. Kist, Manfred van der Vlies, Otto S. Hoekstra, Henri N. J. M. Greuter, Bart de Keizer, Marcel P. M. Stokkel, Wouter V. Vogel, Marc C. Huisman, Arthur van Lingen

Published in: EJNMMI Research | Issue 1/2016

Login to get access

Abstract

Background

Studies on imaging of differentiated thyroid cancer (DTC) using 124I often require a multicenter approach, as the prevalence of DTC is low. Calibration of participating scanners is required to obtain comparable quantification. As determination of a well-defined range of recovery coefficients is complicated for various reasons, a simpler approach based on the assumption that the iodine uptake is highly focal with a background that significantly lacks radioactivity might be more efficient. For each scanner, a linear conversion between known and observed activity can be derived, allowing quantification that can be traced to a common source for all scanners within one study-protocol. The aim of this paper is to outline a procedure using this approach in order to set up a multicenter calibration of PET/CT scanners for 124I.

Methods

A cylindrical polyethylene phantom contained six 2-ml vials with reference activities of ~2, 10, 20, 100, 400, and 2000 kBq, produced by dilution from a known activity. The phantom was scanned twice on PET/CT scanners of participating centers within 1 week. For each scanner, the best proportional and linear fit between measured and known activities were derived and based on statistical analyses of the results of all scanners; it was determined which fit should be applied. In addition, a Bland-Altman analysis was done on calibrated activities with respect to reference activities to asses the relative precision of the scanners.

Results

Nine Philips (vendor A) and nine Siemens (vendor B) PET/CT scanners were calibrated in a time period of 3 days before and after the reference time. No significant differences were detected between the two subsequent scans on any scanner. Six fitted intercepts of vendor A were significantly different from zero, so the linear model was used. Intercepts ranged from −8 to 26 kBq and slopes ranged from 0.80 to 0.98. Bland-Altman analysis of calibrated and reference activities showed that the relative error of calibrated activities was smaller than that of uncalibrated activities.

Conclusions

A simplified multicenter calibration procedure for PET/CT scans that show highly focal uptake and negligible background is feasible and results in more precise quantification. Our procedure can be used in multicenter 124I PET scans focusing on (recurrent) DTC.
Literature
1.
go back to reference Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368:623–32.CrossRefPubMedPubMedCentral Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368:623–32.CrossRefPubMedPubMedCentral
2.
go back to reference Pettinato C, Spezi E, Nanni C, Grassetto G, Monari F, Allegri V, et al. Pretherapeutic dosimetry in patients affected by metastatic thyroid cancer using 124I PET/CT sequential scans for 131I treatment planning. Clin Nucl Med. 2014;39:e367–74.CrossRefPubMed Pettinato C, Spezi E, Nanni C, Grassetto G, Monari F, Allegri V, et al. Pretherapeutic dosimetry in patients affected by metastatic thyroid cancer using 124I PET/CT sequential scans for 131I treatment planning. Clin Nucl Med. 2014;39:e367–74.CrossRefPubMed
3.
go back to reference Kist JW, de Keizer B, Stokkel MPM, Hoekstra OS, Vogel WV, THYROPET study group. Recurrent differentiated thyroid cancer: towards personalized treatment based on evaluation of tumor characteristics with PET (THYROPET Study): study protocol of a multicenter observational cohort study. BMC Cancer. 2014;14:405.CrossRefPubMedPubMedCentral Kist JW, de Keizer B, Stokkel MPM, Hoekstra OS, Vogel WV, THYROPET study group. Recurrent differentiated thyroid cancer: towards personalized treatment based on evaluation of tumor characteristics with PET (THYROPET Study): study protocol of a multicenter observational cohort study. BMC Cancer. 2014;14:405.CrossRefPubMedPubMedCentral
4.
go back to reference Jentzen W, Hoppenbrouwers J, van Leeuwen P, van der Velden D, van de Kolk R, Poeppel TD, et al. Assessment of lesion response in the initial radioiodine treatment of differentiated thyroid cancer using 124I PET imaging. J Nucl Med. 2014;55:1759–65.CrossRefPubMed Jentzen W, Hoppenbrouwers J, van Leeuwen P, van der Velden D, van de Kolk R, Poeppel TD, et al. Assessment of lesion response in the initial radioiodine treatment of differentiated thyroid cancer using 124I PET imaging. J Nucl Med. 2014;55:1759–65.CrossRefPubMed
5.
go back to reference Lassmann M, Reiners C, Luster M. Dosimetry and thyroid cancer: the individual dosage of radioiodine. Endocr Relat Cancer. 2010;17:R161–72.CrossRefPubMed Lassmann M, Reiners C, Luster M. Dosimetry and thyroid cancer: the individual dosage of radioiodine. Endocr Relat Cancer. 2010;17:R161–72.CrossRefPubMed
6.
go back to reference Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54. Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.
7.
go back to reference Jentzen W. Experimental investigation of factors affecting the absolute recovery coefficients in iodine-124 PET lesion imaging. Phys Med Biol. 2010;55:2365–98.CrossRefPubMed Jentzen W. Experimental investigation of factors affecting the absolute recovery coefficients in iodine-124 PET lesion imaging. Phys Med Biol. 2010;55:2365–98.CrossRefPubMed
8.
go back to reference Freudenberg LS, Jentzen W, Görges R, Petrich T, Marlowe RJ, Knust J, et al. 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin. 2007;46:121–8.PubMed Freudenberg LS, Jentzen W, Görges R, Petrich T, Marlowe RJ, Knust J, et al. 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin. 2007;46:121–8.PubMed
9.
go back to reference Jentzen W, Freudenberg LS, Eising EG, Sonnenschein W, Knust J, Bockisch A. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 2008;49:1017–23.CrossRefPubMed Jentzen W, Freudenberg LS, Eising EG, Sonnenschein W, Knust J, Bockisch A. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 2008;49:1017–23.CrossRefPubMed
10.
go back to reference ICRP. Radiation dose to patients from radiopharmaceuticals. Ann ICRP. 1988;(18):1–4. ICRP. Radiation dose to patients from radiopharmaceuticals. Ann ICRP. 1988;(18):1–4.
11.
go back to reference Kist JW, de Keizer B, van der Vlies M, Brouwers AH, van der Zant FM, Hermsen R, et al. 124I PET/CT to predict the outcome of blind 131I treatment in patients with biochemical recurrence of differentiated thyroid cancer; results of a multicenter diagnostic cohort study (THYROPET). J Nucl Med Soc Nucl Med. 2015. [Epub ahead of print]. Kist JW, de Keizer B, van der Vlies M, Brouwers AH, van der Zant FM, Hermsen R, et al. 124I PET/CT to predict the outcome of blind 131I treatment in patients with biochemical recurrence of differentiated thyroid cancer; results of a multicenter diagnostic cohort study (THYROPET). J Nucl Med Soc Nucl Med. 2015. [Epub ahead of print].
13.
14.
go back to reference Makris NE, Boellaard R, Visser EP, de Jong JR, Vanderlinden B, Wierts R, et al. Multicenter harmonization of 89Zr PET/CT performance. J Nucl Med. 2014;55:264–7.CrossRefPubMed Makris NE, Boellaard R, Visser EP, de Jong JR, Vanderlinden B, Wierts R, et al. Multicenter harmonization of 89Zr PET/CT performance. J Nucl Med. 2014;55:264–7.CrossRefPubMed
16.
go back to reference Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.CrossRefPubMed Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.CrossRefPubMed
17.
go back to reference Beattie BJ, Pentlow KS, O’Donoghue J, Humm JL. A recommendation for revised dose calibrator measurement procedures for 89Zr and 124I. PLoS ONE. 2014;9, e106868.CrossRefPubMedPubMedCentral Beattie BJ, Pentlow KS, O’Donoghue J, Humm JL. A recommendation for revised dose calibrator measurement procedures for 89Zr and 124I. PLoS ONE. 2014;9, e106868.CrossRefPubMedPubMedCentral
18.
go back to reference Pommé S. Methods for primary standardization of activity. Metrologia. 2007;44(4):17–26. Pommé S. Methods for primary standardization of activity. Metrologia. 2007;44(4):17–26.
19.
go back to reference van Dongen GA, Ussi AE, de Man FH, Migliaccio G. EATRIS, a European initiative to boost translational biomedical research. Am J Nucl Med Mol Imaging. 2013;3:166–74.PubMedPubMedCentral van Dongen GA, Ussi AE, de Man FH, Migliaccio G. EATRIS, a European initiative to boost translational biomedical research. Am J Nucl Med Mol Imaging. 2013;3:166–74.PubMedPubMedCentral
Metadata
Title
Calibration of PET/CT scanners for multicenter studies on differentiated thyroid cancer with 124I
Authors
Jakob W. Kist
Manfred van der Vlies
Otto S. Hoekstra
Henri N. J. M. Greuter
Bart de Keizer
Marcel P. M. Stokkel
Wouter V. Vogel
Marc C. Huisman
Arthur van Lingen
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2016
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-016-0191-x

Other articles of this Issue 1/2016

EJNMMI Research 1/2016 Go to the issue