Skip to main content
Top
Published in: EJNMMI Research 1/2016

Open Access 01-12-2016 | Original research

PET imaging of cyclooxygenase-2 (COX-2) in a pre-clinical colorectal cancer model

Authors: Ole Tietz, Melinda Wuest, Alison Marshall, Darryl Glubrecht, Ingrit Hamann, Monica Wang, Cody Bergman, Jenilee D. Way, Frank Wuest

Published in: EJNMMI Research | Issue 1/2016

Login to get access

Abstract

Background

Cyclooxygenase-2 (COX-2) is the inducible isoform of the cyclooxygenase enzyme family. COX-2 is involved in tumor development and progression, and frequent overexpression of COX-2 in a variety of human cancers has made COX-2 an important drug target for cancer treatment. Non-invasive imaging of COX-2 expression in cancer would be useful for assessing COX-2-mediated effects on chemoprevention and radiosensitization using COX-2 inhibitors as an emerging class of anti-cancer drugs, especially for colorectal cancer. Herein, we describe the radiopharmacological analysis of [18F]Pyricoxib, a novel radiolabeled COX-2 inhibitor, for specific PET imaging of COX-2 in colorectal cancer.

Methods

Uptake of [18F]Pyricoxib was assessed in human colorectal cancer cell lines HCA-7 (COX-2 positive) and HCT-116 (COX-2 negative). Standard COX-2 inhibitors were used to test for specificity of [18F]Pyricoxib for COX-2 binding in vitro and in vivo. PET imaging, biodistribution, and radiometabolite analyses were included into radiopharmacological evaluation of [18F]Pyricoxib.

Results

Radiotracer uptake in COX-2 positive HCA-7 cells was significantly higher than in COX-2 negative HCT-116 cells (P < 0.05). COX-2 inhibitors, celecoxib, rofecoxib, and SC58125, blocked uptake of [18F]Pyricoxib in HCA-7 cells in a concentration-dependent manner. The radiotracer was slowly metabolized in mice, with approximately 60 % of intact compound after 2 h post-injection. Selective COX-2-mediated tumor uptake of [18F]Pyricoxib in HCA-7 xenografts was confirmed in vivo. Celecoxib (100 mg/kg) selectively blocked tumor uptake by 16 % (PET image analysis; P < 0.05) and by 51 % (biodistribution studies; P < 0.01).

Conclusions

The novel PET radiotracer [18F]Pyricoxib displays a promising radiopharmacological profile to study COX-2 expression in cancer in vivo.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kurumbail RG, Kiefer JR, Marnett LJ. Cyclooxygenase enzymes: catalysis and inhibition. Curr Opin Struct Biol. 2001;11:752–60.CrossRefPubMed Kurumbail RG, Kiefer JR, Marnett LJ. Cyclooxygenase enzymes: catalysis and inhibition. Curr Opin Struct Biol. 2001;11:752–60.CrossRefPubMed
2.
go back to reference Okamoto T, Hino O. Expression of cyclooxygenase-1 and -2 mRNA in rat tissues: tissue-specific difference in the expression of the basal level of mRNA. Int J Mol Med. 2000;6:455–7.PubMed Okamoto T, Hino O. Expression of cyclooxygenase-1 and -2 mRNA in rat tissues: tissue-specific difference in the expression of the basal level of mRNA. Int J Mol Med. 2000;6:455–7.PubMed
3.
go back to reference Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci U S A. 1994;91:12013–7.CrossRefPubMedPubMedCentral Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci U S A. 1994;91:12013–7.CrossRefPubMedPubMedCentral
4.
go back to reference Teismann P, Tieu K, Choi D, Wu D, Naini A, Hunot S, et al. Cyclooxygenase-2 is instrumental in parkinson’s disease neurodegeneration. Proc Natl Acad Sci U S A. 2003;100:5473–8.CrossRefPubMedPubMedCentral Teismann P, Tieu K, Choi D, Wu D, Naini A, Hunot S, et al. Cyclooxygenase-2 is instrumental in parkinson’s disease neurodegeneration. Proc Natl Acad Sci U S A. 2003;100:5473–8.CrossRefPubMedPubMedCentral
5.
go back to reference Méric J, Rottey S, Olaussen K, Soria J, Khayat D, Rixe O, et al. Cyclooxygenase-2 as a target for anticancer drug development. Crit Rev Oncol. 2006;59:51–64.CrossRef Méric J, Rottey S, Olaussen K, Soria J, Khayat D, Rixe O, et al. Cyclooxygenase-2 as a target for anticancer drug development. Crit Rev Oncol. 2006;59:51–64.CrossRef
6.
go back to reference Shi S, Klotz U. Clinical use and pharmacological properties of selective COX-2 inhibitors. Eur J Clin Pharmacol. 2008;64:233–52.CrossRefPubMed Shi S, Klotz U. Clinical use and pharmacological properties of selective COX-2 inhibitors. Eur J Clin Pharmacol. 2008;64:233–52.CrossRefPubMed
8.
9.
go back to reference Yu Y, Ricciotti E, Scalia R, Tang SY, Grant G, Yu Z, Landesberg G, et al. Vascular COX-2 modulates blood pressure and thrombosis in mice. Sci Transl Med. 2012;4(132):132ra54.PubMed Yu Y, Ricciotti E, Scalia R, Tang SY, Grant G, Yu Z, Landesberg G, et al. Vascular COX-2 modulates blood pressure and thrombosis in mice. Sci Transl Med. 2012;4(132):132ra54.PubMed
10.
go back to reference Edwards J, Mukherjee R, Munro AF, Wells AC, Almushatat A, Bartlett JMS. HER2 and COX2 expression in human prostate cancer. Eur J Cancer. 2004;40:50–5.CrossRefPubMed Edwards J, Mukherjee R, Munro AF, Wells AC, Almushatat A, Bartlett JMS. HER2 and COX2 expression in human prostate cancer. Eur J Cancer. 2004;40:50–5.CrossRefPubMed
12.
go back to reference Hwang D, Scollard D, Byrne J, Levine E. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. J Natl Cancer Inst. 1998;90:455–60.CrossRefPubMed Hwang D, Scollard D, Byrne J, Levine E. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. J Natl Cancer Inst. 1998;90:455–60.CrossRefPubMed
13.
go back to reference Jiménez P, García A, Santander S, Piazuelo E. Prevention of cancer in the upper gastrointestinal tract with COX-inhibition, still an option? Curr Pharm Des. 2007;13:2261–73.CrossRefPubMed Jiménez P, García A, Santander S, Piazuelo E. Prevention of cancer in the upper gastrointestinal tract with COX-inhibition, still an option? Curr Pharm Des. 2007;13:2261–73.CrossRefPubMed
14.
go back to reference Greenhough A, Smartt H, Moore A, Roberts H, Williams A, Paraskeva C, et al. The COX-2/PGE(2) pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30:377–86.CrossRefPubMed Greenhough A, Smartt H, Moore A, Roberts H, Williams A, Paraskeva C, et al. The COX-2/PGE(2) pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30:377–86.CrossRefPubMed
15.
go back to reference Ghosh N, Chaki R, Mandal V, Mandal S. COX-2 as a target for cancer chemotherapy. Pharmacol Rep. 2010;62:233–44.CrossRefPubMed Ghosh N, Chaki R, Mandal V, Mandal S. COX-2 as a target for cancer chemotherapy. Pharmacol Rep. 2010;62:233–44.CrossRefPubMed
16.
go back to reference Inoue H, Taba Y, Miwa Y, Yokota C, Miyagi M, Sasaguri T. Transcriptional and posttranscriptional regulation of cyclooxygenase-2 expression by fluid shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2002;22:1415–20.CrossRefPubMed Inoue H, Taba Y, Miwa Y, Yokota C, Miyagi M, Sasaguri T. Transcriptional and posttranscriptional regulation of cyclooxygenase-2 expression by fluid shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2002;22:1415–20.CrossRefPubMed
17.
go back to reference Tietz O, Marshall A, Wuest M, Wang M, Wuest F. Radiotracers for molecular imaging of cyclooxygenase-2 (COX-2) enzyme. Curr Med Chem. 2013;20:4350–69.CrossRefPubMed Tietz O, Marshall A, Wuest M, Wang M, Wuest F. Radiotracers for molecular imaging of cyclooxygenase-2 (COX-2) enzyme. Curr Med Chem. 2013;20:4350–69.CrossRefPubMed
18.
go back to reference Pacelli A, Greenman J, Cawthorne C, Smith G. Imaging COX-2 expression in cancer using PET/SPECT radioligands: current status and future directions. J Labelled Compd Radiopharm. 2014;57:317–22.CrossRef Pacelli A, Greenman J, Cawthorne C, Smith G. Imaging COX-2 expression in cancer using PET/SPECT radioligands: current status and future directions. J Labelled Compd Radiopharm. 2014;57:317–22.CrossRef
19.
go back to reference Laube M, Kniess T, Pietzsch J. Radiolabelled COX-2 inhibitors for non-invasive visualization of COX-2 expression and activity—a critical update. Molecules. 2013;18:6311–55.CrossRefPubMed Laube M, Kniess T, Pietzsch J. Radiolabelled COX-2 inhibitors for non-invasive visualization of COX-2 expression and activity—a critical update. Molecules. 2013;18:6311–55.CrossRefPubMed
20.
go back to reference McCarthy TJ, Sheriff AU, Graneto MJ, Talley JJ, Welch MJ. Radiosynthesis, in vitro validation, and in vivo evaluation of 18F-labeled COX-1 and COX-2 inhibitors. J Nucl Med. 2002;43:117–24.PubMed McCarthy TJ, Sheriff AU, Graneto MJ, Talley JJ, Welch MJ. Radiosynthesis, in vitro validation, and in vivo evaluation of 18F-labeled COX-1 and COX-2 inhibitors. J Nucl Med. 2002;43:117–24.PubMed
21.
go back to reference Uddin M, Crews B, Ghebreselasie K, Huda I, Kingsley P, Ansari M, et al. Fluorinated COX-2 inhibitors as agents in PET imaging of inflammation and cancer. Can Prev Res. 2011;4:1536–45.CrossRef Uddin M, Crews B, Ghebreselasie K, Huda I, Kingsley P, Ansari M, et al. Fluorinated COX-2 inhibitors as agents in PET imaging of inflammation and cancer. Can Prev Res. 2011;4:1536–45.CrossRef
22.
go back to reference Kaur J, Tietz O, Bhardwaj A, Marshall A, Way J, Wuest M, et al. Design, synthesis, and evaluation of an (18) F-labeled radiotracer based on celecoxib-NBD for positron emission tomography (PET) imaging of cyclooxygenase-2 (COX-2). Chem Med Chem. 2015;10:1635–40.CrossRefPubMed Kaur J, Tietz O, Bhardwaj A, Marshall A, Way J, Wuest M, et al. Design, synthesis, and evaluation of an (18) F-labeled radiotracer based on celecoxib-NBD for positron emission tomography (PET) imaging of cyclooxygenase-2 (COX-2). Chem Med Chem. 2015;10:1635–40.CrossRefPubMed
23.
go back to reference Beswick PJ, Blackaby AP, Bountra C, Brown T, Browning K, Campbell IB, et al. Identification and optimisation of a novel series of pyrimidine based cyclooxygenase-2 (COX-2) inhibitors. Utilisation of a biotransformation approach. Bioorg Med Chem Lett. 2009;19:4509–14.CrossRefPubMed Beswick PJ, Blackaby AP, Bountra C, Brown T, Browning K, Campbell IB, et al. Identification and optimisation of a novel series of pyrimidine based cyclooxygenase-2 (COX-2) inhibitors. Utilisation of a biotransformation approach. Bioorg Med Chem Lett. 2009;19:4509–14.CrossRefPubMed
24.
go back to reference Tietz O, Sharma SK, Kaur J, Way J, Marshall A, Wuest M, et al. Synthesis of three 18F-labelled cyclooxygenase-2 (COX-2) inhibitors based on a pyrimidine scaffold. Org Biomol Chem. 2013;11:8052–64.CrossRefPubMed Tietz O, Sharma SK, Kaur J, Way J, Marshall A, Wuest M, et al. Synthesis of three 18F-labelled cyclooxygenase-2 (COX-2) inhibitors based on a pyrimidine scaffold. Org Biomol Chem. 2013;11:8052–64.CrossRefPubMed
25.
go back to reference Way J, Wuest F. Fully automated synthesis of 4-[18F]fluorobenzylamine based on borohydride/NiCl2 reduction. Nucl Med Biol. 2013;40:430–6.CrossRefPubMed Way J, Wuest F. Fully automated synthesis of 4-[18F]fluorobenzylamine based on borohydride/NiCl2 reduction. Nucl Med Biol. 2013;40:430–6.CrossRefPubMed
26.
go back to reference Debucquoy A, Devos E, Vermaelen P, Landuyt W, De Weer S, Van Den Heuvel F, et al. 18F-FLT and 18F-FDG PET to measure response to radiotherapy combined with celecoxib in two colorectal xenograft models. Int J Radiat Biol. 2009;85:763–71.CrossRefPubMed Debucquoy A, Devos E, Vermaelen P, Landuyt W, De Weer S, Van Den Heuvel F, et al. 18F-FLT and 18F-FDG PET to measure response to radiotherapy combined with celecoxib in two colorectal xenograft models. Int J Radiat Biol. 2009;85:763–71.CrossRefPubMed
27.
go back to reference Feldman HS, Hartvig P, Wiklund L, Doucette AM, Antoni G, Gee A, Ulin J, Langstrom B. Regional distribution of 11C-labeled lidocaine, bupivacaine, and ropivacaine in the heart, lungs, and skeletal muscle of pigs studied with positron emission tomography. Biopharm Drug Dispos. 1997;18:151–64.CrossRefPubMed Feldman HS, Hartvig P, Wiklund L, Doucette AM, Antoni G, Gee A, Ulin J, Langstrom B. Regional distribution of 11C-labeled lidocaine, bupivacaine, and ropivacaine in the heart, lungs, and skeletal muscle of pigs studied with positron emission tomography. Biopharm Drug Dispos. 1997;18:151–64.CrossRefPubMed
28.
go back to reference Patel SK, Beaino W, Anderson CJ, Janjic JM. Theranostic nanoemulsions for macrophage COX-2 inhibition in a murine inflammation model. Clin Immunol. 2015;160:59–70.CrossRefPubMed Patel SK, Beaino W, Anderson CJ, Janjic JM. Theranostic nanoemulsions for macrophage COX-2 inhibition in a murine inflammation model. Clin Immunol. 2015;160:59–70.CrossRefPubMed
29.
go back to reference Riendeau D, Percival MD, Boyce S, Brideau C, Charleson S, Cromlish W, Ethier D, Evans J, Falgueyret JP, Ford-Hutchinson AW, Gordon R, Greig G, Gresser M, Guay J, Kargman S, Léger S, Mancini JA, O’Neill G, Ouellet M, Rodger IW, Thérien M, Wang Z, Webb JK, Wong E, Chan CC, et al. Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2 inhibitor. Br J Pharmacol. 1997;121:105–17.CrossRefPubMedPubMedCentral Riendeau D, Percival MD, Boyce S, Brideau C, Charleson S, Cromlish W, Ethier D, Evans J, Falgueyret JP, Ford-Hutchinson AW, Gordon R, Greig G, Gresser M, Guay J, Kargman S, Léger S, Mancini JA, O’Neill G, Ouellet M, Rodger IW, Thérien M, Wang Z, Webb JK, Wong E, Chan CC, et al. Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2 inhibitor. Br J Pharmacol. 1997;121:105–17.CrossRefPubMedPubMedCentral
30.
go back to reference Chan CC, Boyce S, Brideau C, Charleson S, Cromlish W, Ethier D, Evans J, Ford-Hutchinson AW, Forrest MJ, Gauthier JY, Gordon R, Gresser M, Guay J, Kargman S, Kennedy B, Leblanc Y, Leger S, Mancini J, O’Neill GP, Ouellet M, Patrick D, Percival MD, Perrier H, Prasit P, Rodger I, et al. Rofecoxib [Vioxx, MK-0966; 4-(4′-methylsulfonylphenyl)-3-phenyl-2-(5H)-furanone]: a potent and orally active cyclooxygenase-2 inhibitor. Pharmacological and biochemical profiles. J Pharmacol Exp Ther. 1999;290:551–60.PubMed Chan CC, Boyce S, Brideau C, Charleson S, Cromlish W, Ethier D, Evans J, Ford-Hutchinson AW, Forrest MJ, Gauthier JY, Gordon R, Gresser M, Guay J, Kargman S, Kennedy B, Leblanc Y, Leger S, Mancini J, O’Neill GP, Ouellet M, Patrick D, Percival MD, Perrier H, Prasit P, Rodger I, et al. Rofecoxib [Vioxx, MK-0966; 4-(4′-methylsulfonylphenyl)-3-phenyl-2-(5H)-furanone]: a potent and orally active cyclooxygenase-2 inhibitor. Pharmacological and biochemical profiles. J Pharmacol Exp Ther. 1999;290:551–60.PubMed
31.
go back to reference Zhang Y, Cheng S, Zhang M, Zhen L, Pang D, Zhang Q, Li Z. High-infiltration of tumor-associated macrophages predicts unfavorable clinical outcome for node-negative breast cancer. PLoS One. 2013;8:e76147.CrossRefPubMedPubMedCentral Zhang Y, Cheng S, Zhang M, Zhen L, Pang D, Zhang Q, Li Z. High-infiltration of tumor-associated macrophages predicts unfavorable clinical outcome for node-negative breast cancer. PLoS One. 2013;8:e76147.CrossRefPubMedPubMedCentral
32.
go back to reference Awara WM, El-Sisi EA, El-Sayad ME, Goda AE. The potential role of cyclooxygenase-2 inhibitors in the treatment of experimentally-induced mammary tumour: does celecoxib enhance the anti-tumour activity of doxorubicin? Pharmacol Res. 2004;50:487–98.CrossRefPubMed Awara WM, El-Sisi EA, El-Sayad ME, Goda AE. The potential role of cyclooxygenase-2 inhibitors in the treatment of experimentally-induced mammary tumour: does celecoxib enhance the anti-tumour activity of doxorubicin? Pharmacol Res. 2004;50:487–98.CrossRefPubMed
33.
go back to reference Weber A, Casini A, Heine A, Kuhn D, Supuran CT, Scozzafava A, et al. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J Med Chem. 2004;47:550–7.CrossRefPubMed Weber A, Casini A, Heine A, Kuhn D, Supuran CT, Scozzafava A, et al. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J Med Chem. 2004;47:550–7.CrossRefPubMed
34.
go back to reference Grosch S, Maier TJ, Schiffmann S, Geisslinger G. Cyclooxygenase-2 (COX-2) independent anticarcinogenic effects of selective COX-2 inhibitors. J Nat Cancer Inst. 2006;98:736–47.CrossRefPubMed Grosch S, Maier TJ, Schiffmann S, Geisslinger G. Cyclooxygenase-2 (COX-2) independent anticarcinogenic effects of selective COX-2 inhibitors. J Nat Cancer Inst. 2006;98:736–47.CrossRefPubMed
Metadata
Title
PET imaging of cyclooxygenase-2 (COX-2) in a pre-clinical colorectal cancer model
Authors
Ole Tietz
Melinda Wuest
Alison Marshall
Darryl Glubrecht
Ingrit Hamann
Monica Wang
Cody Bergman
Jenilee D. Way
Frank Wuest
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2016
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-016-0192-9

Other articles of this Issue 1/2016

EJNMMI Research 1/2016 Go to the issue