Skip to main content
Top
Published in: EJNMMI Research 1/2016

Open Access 01-12-2016 | Original research

Effects of erlotinib therapy on [11C]erlotinib uptake in EGFR mutated, advanced NSCLC

Authors: Idris Bahce, Maqsood Yaqub, Hanane Errami, Robert C. Schuit, Patrick Schober, Erik Thunnissen, Albert D. Windhorst, Adriaan A. Lammertsma, Egbert F. Smit, N. Harry Hendrikse

Published in: EJNMMI Research | Issue 1/2016

Login to get access

Abstract

Background

In non-small cell lung cancer (NSCLC) patients off erlotinib therapy, positron emission tomography (PET) using [11C]erlotinib distinguished epidermal growth factor receptor (EGFR) mutations from wild-type EGFR. However, tumor uptake of [11C]erlotinib during erlotinib therapy is unknown. Therefore, the aims of this study were to evaluate tumor [11C]erlotinib uptake in NSCLC patients both on and off erlotinib therapy, to evaluate the effect of erlotinib therapy on tumor perfusion and its correlation to tumor [11C]erlotinib uptake, and also, to investigate simplified uptake parameters using arterial and venous blood samples.

Methods

Ten patients were to be scanned twice with a 1–2-week interval, i.e., on (E+) and off (E−) erlotinib therapy. Each procedure consisted of a low-dose CT scan, a 10-min dynamic [15O]H2O PET scan, and a 60-min dynamic [11C]erlotinib PET scan with arterial and venous sampling at six time points. In patients(E+), the optimal compartment model was analyzed using Akaike information criterion. In patients(E−), the uptake parameter was the volume of distribution (V T), estimated by using metabolite-corrected plasma input curves based on image-derived input functions and discrete arterial and venous blood samples. Tumor blood flow (TBF) was determined by rate constant of influx (K1) of [15O]H2O using the 1T2k model and correlated with V T and K1 values of [11C]erlotinib. The investigated simplified parameters were standardized uptake value (SUV) and tumor-to-blood ratio (TBR) at 40–60 min pi interval.

Results

Of the 13 patients included, ten were scanned twice. In patients(E+), [11C]erlotinib best fitted the 2T4k model with V T. In all patients, tumor V T(E+) was lower than V T(E−) (median V T(E−) = 1.61, range 0.77–3.01; median V T(E+) = 1.17, range 0.53–1.74; P = 0.004). Using [15O]H2O, five patients were scanned twice. TBF did not change with erlotinib therapy, TBF showed a positive trend towards correlation with [11C]erlotinib K1, but not with V T. TBR40–50 and TBR50–60, using both arterial and venous sampling, correlated with V T(E−) (all r s >0.9, P < 0.001), while SUV did not. In patients off and on therapy, venous TBR underestimated arterial TBR by 26 ± 12 and 9 ± 9 %, respectively.

Conclusions

In patients on erlotinib in therapeutic dose, tumor V T decreases with high variability, independent of tumor perfusion. For simplification of [11C]erlotinib PET scanning protocols, both arterial and venous TBR 40–60 min post injection can be used; however, arterial and venous TBR values should not be interchanged as venous values underestimate arterial values.

Trial registration

Registered at the Netherlands Trial Registry: NTR3670.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bahce I, Smit EF, Lubberink M, van der Veldt AAM, Yaqub M, Windhorst AD, et al. Development of [(11)C]erlotinib positron emission tomography for in vivo evaluation of EGF receptor mutational status. Clin Cancer Res. 2013;19:183–93.CrossRefPubMed Bahce I, Smit EF, Lubberink M, van der Veldt AAM, Yaqub M, Windhorst AD, et al. Development of [(11)C]erlotinib positron emission tomography for in vivo evaluation of EGF receptor mutational status. Clin Cancer Res. 2013;19:183–93.CrossRefPubMed
2.
go back to reference Mammatas LH, Verheul HM, Hendrikse NH, Yaqub M, Lammertsma AA, Menke-van der Houven CW, et al. Molecular imaging of targeted therapies with positron emission tomography: the visualization of personalized cancer care. Cell Oncol. 2015;38:49–64.CrossRef Mammatas LH, Verheul HM, Hendrikse NH, Yaqub M, Lammertsma AA, Menke-van der Houven CW, et al. Molecular imaging of targeted therapies with positron emission tomography: the visualization of personalized cancer care. Cell Oncol. 2015;38:49–64.CrossRef
3.
go back to reference Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7:169–81.CrossRefPubMed Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7:169–81.CrossRefPubMed
4.
go back to reference Keedy VL, Temin S, Somerfield MR, Beasley MB, Johnson DH, McShane LM, et al. American Society of Clinical Oncology provisional clinical opinion: epidermal growth factor receptor (EGFR) mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy. J Clin Oncol. 2011;29:2121–7.CrossRefPubMed Keedy VL, Temin S, Somerfield MR, Beasley MB, Johnson DH, McShane LM, et al. American Society of Clinical Oncology provisional clinical opinion: epidermal growth factor receptor (EGFR) mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy. J Clin Oncol. 2011;29:2121–7.CrossRefPubMed
5.
go back to reference Weber B, Winterdahl M, Memon A, Sorensen BS, Keiding S, Sorensen L, et al. Erlotinib accumulation in brain metastases from non-small cell lung cancer: visualization by positron emission tomography in a patient harboring a mutation in the epidermal growth factor receptor. J Thorac Oncol. 2011;6:1287–9.CrossRefPubMed Weber B, Winterdahl M, Memon A, Sorensen BS, Keiding S, Sorensen L, et al. Erlotinib accumulation in brain metastases from non-small cell lung cancer: visualization by positron emission tomography in a patient harboring a mutation in the epidermal growth factor receptor. J Thorac Oncol. 2011;6:1287–9.CrossRefPubMed
6.
go back to reference Memon AA, Weber B, Winterdahl M, Jakobsen S, Meldgaard P, Madsen HHT, et al. PET imaging of patients with non-small cell lung cancer employing an EGF receptor targeting drug as tracer. Br J Cancer. 2011;105:1850–5.PubMedCentralCrossRefPubMed Memon AA, Weber B, Winterdahl M, Jakobsen S, Meldgaard P, Madsen HHT, et al. PET imaging of patients with non-small cell lung cancer employing an EGF receptor targeting drug as tracer. Br J Cancer. 2011;105:1850–5.PubMedCentralCrossRefPubMed
7.
go back to reference Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–57.CrossRefPubMed Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–57.CrossRefPubMed
8.
go back to reference Van Assche K, Ferdinande L, Lievens Y, Vandecasteele K, Surmont V. EGFR mutation positive stage IV non-small-cell lung cancer: treatment beyond progression. Front Oncol. 2014;4:350.PubMedCentralPubMed Van Assche K, Ferdinande L, Lievens Y, Vandecasteele K, Surmont V. EGFR mutation positive stage IV non-small-cell lung cancer: treatment beyond progression. Front Oncol. 2014;4:350.PubMedCentralPubMed
9.
go back to reference Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007;48:471–80.PubMed Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007;48:471–80.PubMed
10.
go back to reference Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cereb Blood Flow Metab. 2001;21:635–52.CrossRefPubMed Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cereb Blood Flow Metab. 2001;21:635–52.CrossRefPubMed
11.
go back to reference Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab. 1996;16:42–52.CrossRefPubMed Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab. 1996;16:42–52.CrossRefPubMed
12.
go back to reference Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M. PET kinetic analysis—compartmental model. Ann Nucl Med. 2006;20:583–8.CrossRefPubMed Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M. PET kinetic analysis—compartmental model. Ann Nucl Med. 2006;20:583–8.CrossRefPubMed
13.
go back to reference Akaike. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19:716–23.CrossRef Akaike. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19:716–23.CrossRef
14.
go back to reference Van der Veldt AAM, Hendrikse NH, Harms HJ, Comans EFI, Postmus PE, Smit EF, et al. Quantitative parametric perfusion images using 15O-labeled water and a clinical PET/CT scanner: test-retest variability in lung cancer. J Nucl Med. 2010;51:1684.CrossRefPubMed Van der Veldt AAM, Hendrikse NH, Harms HJ, Comans EFI, Postmus PE, Smit EF, et al. Quantitative parametric perfusion images using 15O-labeled water and a clinical PET/CT scanner: test-retest variability in lung cancer. J Nucl Med. 2010;51:1684.CrossRefPubMed
15.
go back to reference Iqbal R, Kramer GM, Verwer EE, Huisman MC, De Langen AJ, Bahce I, et al. Multiparametric analysis of the relationship between tumor hypoxia and perfusion using 18F-FAZA and 15O-H2O PET. J Nucl Med. 2015; jnumed–115. Iqbal R, Kramer GM, Verwer EE, Huisman MC, De Langen AJ, Bahce I, et al. Multiparametric analysis of the relationship between tumor hypoxia and perfusion using 18F-FAZA and 15O-H2O PET. J Nucl Med. 2015; jnumed–115.
16.
go back to reference Petrulli JR, Sullivan JM, Zheng M-Q, Bennett DC, Charest J, Huang Y, et al. Quantitative analysis of [11C]-erlotinib PET demonstrates specific binding for activating mutations of the EGFR kinase domain. Neoplasia. 2013;15:1347–53.PubMedCentralCrossRefPubMed Petrulli JR, Sullivan JM, Zheng M-Q, Bennett DC, Charest J, Huang Y, et al. Quantitative analysis of [11C]-erlotinib PET demonstrates specific binding for activating mutations of the EGFR kinase domain. Neoplasia. 2013;15:1347–53.PubMedCentralCrossRefPubMed
17.
go back to reference Abourbeh G, Itamar B, Salnikov O, Beltsov S, Mishani E. Identifying erlotinib-sensitive non-small cell lung carcinoma tumors in mice using [11C] erlotinib PET. EJNMMI Res. 2015;5:4.PubMedCentralCrossRefPubMed Abourbeh G, Itamar B, Salnikov O, Beltsov S, Mishani E. Identifying erlotinib-sensitive non-small cell lung carcinoma tumors in mice using [11C] erlotinib PET. EJNMMI Res. 2015;5:4.PubMedCentralCrossRefPubMed
18.
go back to reference Slobbe P, Windhorst AD, Stigter-van Walsum M, Smit EF, Niessen HG, Solca F, et al. A comparative PET imaging study with the reversible and irreversible EGFR tyrosine kinase inhibitors [11C]erlotinib and [18F]afatinib in lung cancer-bearing mice. EJNMMI Res. 2015;5:14.PubMedCentralCrossRefPubMed Slobbe P, Windhorst AD, Stigter-van Walsum M, Smit EF, Niessen HG, Solca F, et al. A comparative PET imaging study with the reversible and irreversible EGFR tyrosine kinase inhibitors [11C]erlotinib and [18F]afatinib in lung cancer-bearing mice. EJNMMI Res. 2015;5:14.PubMedCentralCrossRefPubMed
19.
go back to reference Wang H, Yu J, Yang G, Song X, Sun X, Zhao S, et al. Assessment of 11C-labeled-4-N-(3-bromoanilino)-6, 7-dimethoxyquinazoline as a positron emission tomography agent to monitor epidermal growth factor receptor expression. Cancer Sci. 2007;98:1413–6.CrossRefPubMed Wang H, Yu J, Yang G, Song X, Sun X, Zhao S, et al. Assessment of 11C-labeled-4-N-(3-bromoanilino)-6, 7-dimethoxyquinazoline as a positron emission tomography agent to monitor epidermal growth factor receptor expression. Cancer Sci. 2007;98:1413–6.CrossRefPubMed
20.
go back to reference Lankheet NA, Knapen LM, Schellens JH, Beijnen JH, Steeghs N, Huitema AD. Plasma concentrations of tyrosine kinase inhibitors imatinib, erlotinib, and sunitinib in routine clinical outpatient cancer care. Ther Drug Monit. 2014;36:326–34.CrossRefPubMed Lankheet NA, Knapen LM, Schellens JH, Beijnen JH, Steeghs N, Huitema AD. Plasma concentrations of tyrosine kinase inhibitors imatinib, erlotinib, and sunitinib in routine clinical outpatient cancer care. Ther Drug Monit. 2014;36:326–34.CrossRefPubMed
21.
go back to reference Li J, Zhao M, He P, Hidalgo M, Baker SD. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res. 2007;13:3731–7.CrossRefPubMed Li J, Zhao M, He P, Hidalgo M, Baker SD. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res. 2007;13:3731–7.CrossRefPubMed
23.
go back to reference Riely GJ, Politi KA, Miller VA, Pao W. Update on epidermal growth factor receptor mutations in non-small cell lung cancer. Clin Cancer Res. 2006;12:7232–41.CrossRefPubMed Riely GJ, Politi KA, Miller VA, Pao W. Update on epidermal growth factor receptor mutations in non-small cell lung cancer. Clin Cancer Res. 2006;12:7232–41.CrossRefPubMed
24.
go back to reference Han B, Zhou X, Zhang R-X, Zang W-F, Chen Z-Y, Song H-D, et al. Mutations of the epidermal growth factor receptor gene in NSCLC patients. Oncol Lett. 2011;2:1233–7.PubMedCentralPubMed Han B, Zhou X, Zhang R-X, Zang W-F, Chen Z-Y, Song H-D, et al. Mutations of the epidermal growth factor receptor gene in NSCLC patients. Oncol Lett. 2011;2:1233–7.PubMedCentralPubMed
25.
go back to reference Arcila ME, Nafa K, Chaft JE, Rekhtman N, Lau C, Reva BA, et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther. 2013;12:220–9.PubMedCentralCrossRefPubMed Arcila ME, Nafa K, Chaft JE, Rekhtman N, Lau C, Reva BA, et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther. 2013;12:220–9.PubMedCentralCrossRefPubMed
26.
go back to reference Wu J-Y, Wu S-G, Yang C-H, Gow C-H, Chang Y-L, Yu C-J, et al. Lung cancer with epidermal growth factor receptor exon 20 mutations is associated with poor gefitinib treatment response. Clin Cancer Res. 2008;14:4877–82.CrossRefPubMed Wu J-Y, Wu S-G, Yang C-H, Gow C-H, Chang Y-L, Yu C-J, et al. Lung cancer with epidermal growth factor receptor exon 20 mutations is associated with poor gefitinib treatment response. Clin Cancer Res. 2008;14:4877–82.CrossRefPubMed
27.
go back to reference Masago K, Fujita S, Irisa K, Kim YH, Ichikawa M, Mio T, et al. Good clinical response to gefitinib in a non-small cell lung cancer patient harboring a rare somatic epidermal growth factor gene point mutation; codon 768 AGC > ATC in exon 20 (S768I). Jpn J Clin Oncol. 2010;40:1105–9.CrossRefPubMed Masago K, Fujita S, Irisa K, Kim YH, Ichikawa M, Mio T, et al. Good clinical response to gefitinib in a non-small cell lung cancer patient harboring a rare somatic epidermal growth factor gene point mutation; codon 768 AGC > ATC in exon 20 (S768I). Jpn J Clin Oncol. 2010;40:1105–9.CrossRefPubMed
28.
go back to reference Ong M, Kwan K, Kamel--Reid S, Vincent M. Neoadjuvant erlotinib and surgical resection of a stage iiia papillary adenocarcinoma of the lung with an L861Q activating EGFR mutation. Curr Oncol. 2012;19:e222.PubMedCentralCrossRefPubMed Ong M, Kwan K, Kamel--Reid S, Vincent M. Neoadjuvant erlotinib and surgical resection of a stage iiia papillary adenocarcinoma of the lung with an L861Q activating EGFR mutation. Curr Oncol. 2012;19:e222.PubMedCentralCrossRefPubMed
Metadata
Title
Effects of erlotinib therapy on [11C]erlotinib uptake in EGFR mutated, advanced NSCLC
Authors
Idris Bahce
Maqsood Yaqub
Hanane Errami
Robert C. Schuit
Patrick Schober
Erik Thunnissen
Albert D. Windhorst
Adriaan A. Lammertsma
Egbert F. Smit
N. Harry Hendrikse
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2016
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-016-0169-8

Other articles of this Issue 1/2016

EJNMMI Research 1/2016 Go to the issue