Skip to main content
Top
Published in: Cellular Oncology 1/2015

01-02-2015 | Review

Molecular imaging of targeted therapies with positron emission tomography: the visualization of personalized cancer care

Authors: Lemonitsa H. Mammatas, Henk M. W. Verheul, N. Harry Hendrikse, Maqsood Yaqub, Adriaan A. Lammertsma, C. Willemien Menke-van der Houven van Oordt

Published in: Cellular Oncology | Issue 1/2015

Login to get access

Abstract

Introduction

Molecular imaging has been defined as the visualization, characterization and measurement of biological processes at the molecular and cellular level in humans and other living systems. In oncology it enables to visualize (part of) the functional behaviour of tumour cells, in contrast to anatomical imaging that focuses on the size and location of malignant lesions.
Available molecular imaging techniques include single photon emission computed tomography (SPECT), positron emission tomography (PET) and optical imaging. In PET, a radiotracer consisting of a positron emitting radionuclide attached to the biologically active molecule of interest is administrated to the patient.
Several approaches have been undertaken to use PET for the improvement of personalized cancer care. For example, a variety of radiolabelled ligands have been investigated for intratumoural target identification and radiolabelled drugs have been developed for direct visualization of the biodistibution in vivo, including intratumoural therapy uptake. First indications of the clinical value of PET for target identification and response prediction in oncology have been reported. This new imaging approach is rapidly developing, but uniformity of scanning processes, standardized methods for outcome evaluation and implementation in daily clinical practice are still in progress. In this review we discuss the available literature on molecular imaging with PET for personalized targeted treatment strategies.

Conclusion

Molecular imaging with radiolabelled targeted anticancer drugs has great potential for the improvement of personalized cancer care. The non-invasive quantification of drug accumulation in tumours and normal tissues provides understanding of the biodistribution in relation to therapeutic and toxic effects.
Literature
2.
go back to reference K.T. Flaherty, I. Puzanov, K.B. Kim et al., Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010)PubMedCentralPubMed K.T. Flaherty, I. Puzanov, K.B. Kim et al., Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010)PubMedCentralPubMed
3.
go back to reference D.A. Mankoff, A definition of molecular imaging. J. Nucl. Med. 48, 18N–21N (2007)PubMed D.A. Mankoff, A definition of molecular imaging. J. Nucl. Med. 48, 18N–21N (2007)PubMed
4.
go back to reference P. Zanzonico, Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. Semin. Nucl. Med. 34, 87–111 (2004)PubMed P. Zanzonico, Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. Semin. Nucl. Med. 34, 87–111 (2004)PubMed
5.
go back to reference G.A. van Dongen, M.J. Vosjan, Immuno-positron emission tomography, shedding light on clinical antibody therapy. Cancer Biother. Radiopharm. 25, 375–385 (2010)PubMed G.A. van Dongen, M.J. Vosjan, Immuno-positron emission tomography, shedding light on clinical antibody therapy. Cancer Biother. Radiopharm. 25, 375–385 (2010)PubMed
6.
go back to reference A. Rahmim, H. Zaidi, PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun. 29, 193–207 (2008)PubMed A. Rahmim, H. Zaidi, PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun. 29, 193–207 (2008)PubMed
8.
go back to reference D.W. Townsend, PET/CT today and tomorrow. J. Nucl. Med. 45(suppl), 4S–14S (2004)PubMed D.W. Townsend, PET/CT today and tomorrow. J. Nucl. Med. 45(suppl), 4S–14S (2004)PubMed
9.
go back to reference J.F. Bruzzi, S.G. Swisher, M.T. Truong et al., Detection of interval distant metastases: clinical utility of integrated CT-PET imaging in patients with esophageal carcinoma after neoadjuvant therapy. Cancer 109, 125–134 (2007)PubMed J.F. Bruzzi, S.G. Swisher, M.T. Truong et al., Detection of interval distant metastases: clinical utility of integrated CT-PET imaging in patients with esophageal carcinoma after neoadjuvant therapy. Cancer 109, 125–134 (2007)PubMed
10.
go back to reference G.A. Silvestri, M.K. Gould, M.L. Margolis et al., Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest 132, 178S–201S (2007)PubMed G.A. Silvestri, M.K. Gould, M.L. Margolis et al., Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest 132, 178S–201S (2007)PubMed
11.
go back to reference M.E. Juweid, S. Stroobants, O.S. Hoekstra et al., Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of international harmonization project in lymphoma. J. Clin. Oncol. 25, 571–578 (2007)PubMed M.E. Juweid, S. Stroobants, O.S. Hoekstra et al., Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of international harmonization project in lymphoma. J. Clin. Oncol. 25, 571–578 (2007)PubMed
12.
go back to reference M. Adejolu, L. Huo, E. Rohren et al., False-positive lesions mimicking breast cancer on FDG PET and PET/CT. AJR Am. J. Roentgenol. 198, W304–W314 (2012)PubMed M. Adejolu, L. Huo, E. Rohren et al., False-positive lesions mimicking breast cancer on FDG PET and PET/CT. AJR Am. J. Roentgenol. 198, W304–W314 (2012)PubMed
13.
go back to reference M. Scheffler, C. Kobe, T. Zander et al., Monitoring reversible and irreversible EGFR inhibition with erlotinib and afatinib in a patient with EGFR-mutated non-small cell lung cancer (NSCLC) using sequential [18 F]fluorothymidine (FLT-)PET. Lung Cancer 77, 617–620 (2012)PubMed M. Scheffler, C. Kobe, T. Zander et al., Monitoring reversible and irreversible EGFR inhibition with erlotinib and afatinib in a patient with EGFR-mutated non-small cell lung cancer (NSCLC) using sequential [18 F]fluorothymidine (FLT-)PET. Lung Cancer 77, 617–620 (2012)PubMed
14.
go back to reference A.J. de Langen, M. Lubberink, R. Boellaard et al., Reproducibility of tumor perfusion measurements using 15O-labeled water and PET. J. Nucl. Med. 49, 1763–1768 (2008)PubMed A.J. de Langen, M. Lubberink, R. Boellaard et al., Reproducibility of tumor perfusion measurements using 15O-labeled water and PET. J. Nucl. Med. 49, 1763–1768 (2008)PubMed
15.
go back to reference F.G. Blankenberg, Imaging the molecular signatures of apoptosis and injury with radiolabeled annexin V. Proc. Am. Thorac. Soc. 6, 469–476 (2009)PubMedCentralPubMed F.G. Blankenberg, Imaging the molecular signatures of apoptosis and injury with radiolabeled annexin V. Proc. Am. Thorac. Soc. 6, 469–476 (2009)PubMedCentralPubMed
16.
go back to reference L.S. Mortensen, J. Johansen, J. Kallehauge et al., FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: results from the DAHANCA 24 trial. Radiother. Oncol. 105, 14–20 (2012)PubMed L.S. Mortensen, J. Johansen, J. Kallehauge et al., FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: results from the DAHANCA 24 trial. Radiother. Oncol. 105, 14–20 (2012)PubMed
17.
go back to reference L.M. Peterson, B.F. Kurland, E.K. Schubert, et al. A phase 2 study of 16α-[18F]-fluoro-17β-estradiol positron emission tomography (FES-PET) as a marker of hormone sensitivity in metastatic breast cancer (MBC). Mol Imaging Biol. (2013) L.M. Peterson, B.F. Kurland, E.K. Schubert, et al. A phase 2 study of 16α-[18F]-fluoro-17β-estradiol positron emission tomography (FES-PET) as a marker of hormone sensitivity in metastatic breast cancer (MBC). Mol Imaging Biol. (2013)
18.
go back to reference A. Verhagen, M. Studeny, G. Luurtsema et al., Metabolism of a [18F]fluorine labeled progestin (21-[18F]fluoro-16 alpha-ethyl-19-norprogesterone) in humans: a clue for future investigations. Nucl. Med. Biol. 21, 941–952 (1994)PubMed A. Verhagen, M. Studeny, G. Luurtsema et al., Metabolism of a [18F]fluorine labeled progestin (21-[18F]fluoro-16 alpha-ethyl-19-norprogesterone) in humans: a clue for future investigations. Nucl. Med. Biol. 21, 941–952 (1994)PubMed
19.
go back to reference F. Dehdashti, J. Picus, J.M. Michalski et al., Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur. J. Nucl. Med. Mol. Imaging 32, 344–350 (2005)PubMed F. Dehdashti, J. Picus, J.M. Michalski et al., Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur. J. Nucl. Med. Mol. Imaging 32, 344–350 (2005)PubMed
20.
go back to reference D.A. Mankoff, J.M. Link, H.M. Linden et al., Tumor receptor imaging. J. Nucl. Med. 49(suppl), 149S–163S (2008)PubMed D.A. Mankoff, J.M. Link, H.M. Linden et al., Tumor receptor imaging. J. Nucl. Med. 49(suppl), 149S–163S (2008)PubMed
21.
go back to reference M. van Kruchten, E.G. de Vries, E.F. de Vries et al., PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncol. 14, e465–e475 (2013)PubMed M. van Kruchten, E.G. de Vries, E.F. de Vries et al., PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncol. 14, e465–e475 (2013)PubMed
22.
go back to reference F. Dehdashti, A.H. McGuire, H.F. van Brocklin et al., Assessment of 21-[18F]fluoro-16 alpha-ethyl-19-norprogesterone as a positron-emitting radiopharmaceutical for the detection of progestin receptors in human breast carcinomas. J. Nucl. Med. 32, 1532–1537 (1991)PubMed F. Dehdashti, A.H. McGuire, H.F. van Brocklin et al., Assessment of 21-[18F]fluoro-16 alpha-ethyl-19-norprogesterone as a positron-emitting radiopharmaceutical for the detection of progestin receptors in human breast carcinomas. J. Nucl. Med. 32, 1532–1537 (1991)PubMed
23.
go back to reference H.B. Zhou, J.H. Lee, C.G. Mayne et al., Imaging progesterone receptor in breast tumors: synthesis and receptor binding affinity of fluoroalkyl-substituted analogues of tanaproget. J. Med. Chem. 53, 3349–3360 (2010)PubMedCentralPubMed H.B. Zhou, J.H. Lee, C.G. Mayne et al., Imaging progesterone receptor in breast tumors: synthesis and receptor binding affinity of fluoroalkyl-substituted analogues of tanaproget. J. Med. Chem. 53, 3349–3360 (2010)PubMedCentralPubMed
24.
go back to reference S.M. Larson, M. Morris, I. Gunther et al., Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J. Nucl. Med. 45, 366–373 (2004)PubMed S.M. Larson, M. Morris, I. Gunther et al., Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J. Nucl. Med. 45, 366–373 (2004)PubMed
25.
go back to reference J.A. Ruizeveld de Winter, P.J. Janssen, H.M. Sleddens, Androgen receptor status in localized and locally progressive hormone refractory human prostate cancer. Am. J. Pathol. 144, 735–746 (1994)PubMedCentralPubMed J.A. Ruizeveld de Winter, P.J. Janssen, H.M. Sleddens, Androgen receptor status in localized and locally progressive hormone refractory human prostate cancer. Am. J. Pathol. 144, 735–746 (1994)PubMedCentralPubMed
26.
go back to reference I. Velikyan, A.L. Sundberg, O. Lindhe et al., Preparation and evaluation of 68Ga-DOTA-hEGF for visualization of EGFR expression in malignant tumors. J. Nucl. Med. 46, 1881–1888 (2005)PubMed I. Velikyan, A.L. Sundberg, O. Lindhe et al., Preparation and evaluation of 68Ga-DOTA-hEGF for visualization of EGFR expression in malignant tumors. J. Nucl. Med. 46, 1881–1888 (2005)PubMed
27.
go back to reference W. Li, G. Niu, L. Lang et al., PET imaging of EGF receptors using [18F]FBEM-EGF in a head and neck squamous cell carcinoma model. Eur. J. Nucl. Med. Mol. Imaging 39, 300–308 (2012)PubMedCentralPubMed W. Li, G. Niu, L. Lang et al., PET imaging of EGF receptors using [18F]FBEM-EGF in a head and neck squamous cell carcinoma model. Eur. J. Nucl. Med. Mol. Imaging 39, 300–308 (2012)PubMedCentralPubMed
28.
go back to reference P.M. Smith-Jones, D.B. Solit, T. Akhurst et al., Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat. Biotechnol. 22, 701–706 (2004)PubMed P.M. Smith-Jones, D.B. Solit, T. Akhurst et al., Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat. Biotechnol. 22, 701–706 (2004)PubMed
29.
go back to reference Z. Miao, G. Ren, H. Liu et al., Small-animal PET imaging of human epidermal growth factor receptor positive tumor with a 64Cu labeled affibody protein. Bioconjug. Chem. 21, 947–954 (2010)PubMed Z. Miao, G. Ren, H. Liu et al., Small-animal PET imaging of human epidermal growth factor receptor positive tumor with a 64Cu labeled affibody protein. Bioconjug. Chem. 21, 947–954 (2010)PubMed
30.
go back to reference Z. Miao, G. Ren, H. Liu et al., PET of EGFR expression with an 18F-labeled affibody molecule. J. Nucl. Med. 53, 1110–1118 (2012)PubMedCentralPubMed Z. Miao, G. Ren, H. Liu et al., PET of EGFR expression with an 18F-labeled affibody molecule. J. Nucl. Med. 53, 1110–1118 (2012)PubMedCentralPubMed
31.
go back to reference C. Xavier, I. Vaneycken, M. D’huyvetter et al., Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 Nanobodies for iPET imaging of HER2 receptor expression in cancer. J. Nucl. Med. 54, 776–784 (2013)PubMed C. Xavier, I. Vaneycken, M. D’huyvetter et al., Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 Nanobodies for iPET imaging of HER2 receptor expression in cancer. J. Nucl. Med. 54, 776–784 (2013)PubMed
33.
go back to reference F. Teng, X. Meng, X. Sun et al., New strategy for monitoring targeted therapy: molecular imaging. Int. J. Nanomedicine 8, 3703–3713 (2013)PubMedCentralPubMed F. Teng, X. Meng, X. Sun et al., New strategy for monitoring targeted therapy: molecular imaging. Int. J. Nanomedicine 8, 3703–3713 (2013)PubMedCentralPubMed
34.
go back to reference W. Cai, K. Chen, L. He et al., Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur. J. Nucl. Med. Mol. Imaging 34, 850–858 (2007)PubMed W. Cai, K. Chen, L. He et al., Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur. J. Nucl. Med. Mol. Imaging 34, 850–858 (2007)PubMed
35.
go back to reference H.J. Aerts, L. Dubois, L. Perk et al., Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J. Nucl. Med. 50, 123–131 (2009)PubMed H.J. Aerts, L. Dubois, L. Perk et al., Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J. Nucl. Med. 50, 123–131 (2009)PubMed
36.
go back to reference E.B. Corcoran, R.N. Hanson, Imaging EGFR and HER2 by PET and SPECT: a review. Med. Res. Rev. 34, 596–643 (2014)PubMed E.B. Corcoran, R.N. Hanson, Imaging EGFR and HER2 by PET and SPECT: a review. Med. Res. Rev. 34, 596–643 (2014)PubMed
37.
go back to reference C.C. Wagner, O. Langer, Approaches using molecular imaging technology – use of PET in clinical microdose studies. Adv. Drug Deliv. Rev. 63, 539–546 (2011)PubMedCentralPubMed C.C. Wagner, O. Langer, Approaches using molecular imaging technology – use of PET in clinical microdose studies. Adv. Drug Deliv. Rev. 63, 539–546 (2011)PubMedCentralPubMed
39.
go back to reference B. van den Bossche, C. van de Wiele, Receptor imaging in oncology by means of nuclear medicine: current status. J. Clin. Oncol. 22, 3593–3607 (2004) B. van den Bossche, C. van de Wiele, Receptor imaging in oncology by means of nuclear medicine: current status. J. Clin. Oncol. 22, 3593–3607 (2004)
40.
go back to reference P. Slobbe, A.J. Poot, A.D. Windhorst et al., PET imaging with small-molecule tyrosine kinase inhibitors: TKI-PET. Drug Discov. Today 17, 1175–1187 (2012)PubMed P. Slobbe, A.J. Poot, A.D. Windhorst et al., PET imaging with small-molecule tyrosine kinase inhibitors: TKI-PET. Drug Discov. Today 17, 1175–1187 (2012)PubMed
41.
go back to reference M.W. Brechbiel, Bifunctional chelates for metal nuclides. Q. J. Nucl. Mol. Imaging. 52, 166–173 (2008) M.W. Brechbiel, Bifunctional chelates for metal nuclides. Q. J. Nucl. Mol. Imaging. 52, 166–173 (2008)
42.
go back to reference A.B. Riemer, M. Klinger, S. Wagner, Generation of Peptide mimics of the epitope recognized by trastuzumab on the oncogenic protein Her-2/neu. J. Immunol. 173, 394–401 (2004) A.B. Riemer, M. Klinger, S. Wagner, Generation of Peptide mimics of the epitope recognized by trastuzumab on the oncogenic protein Her-2/neu. J. Immunol. 173, 394–401 (2004)
43.
go back to reference G.A. van Dongen, G.W. Visser, M.N. Lub-de Hooge et al., Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist 12, 1379–1389 (2007)PubMed G.A. van Dongen, G.W. Visser, M.N. Lub-de Hooge et al., Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist 12, 1379–1389 (2007)PubMed
44.
go back to reference A.A. Memon, S. Jakobsen, F. Dagnaes-Hansen et al., Positron emission tomography (PET) imaging with [11C]-labeled erlotinib: a micro-PET study on mice with lung tumor xenografts. Cancer Res. 69, 873–878 (2009)PubMed A.A. Memon, S. Jakobsen, F. Dagnaes-Hansen et al., Positron emission tomography (PET) imaging with [11C]-labeled erlotinib: a micro-PET study on mice with lung tumor xenografts. Cancer Res. 69, 873–878 (2009)PubMed
45.
go back to reference A.J. Poot, B. van der Wildt, M. Stigter-van Walsum et al., [11C]Sorafenib: radiosynthesis and preclinical evaluation in tumor-bearing mice of a new TKI-PET tracer. Nucl. Med. Biol. 40, 488–497 (2013)PubMed A.J. Poot, B. van der Wildt, M. Stigter-van Walsum et al., [11C]Sorafenib: radiosynthesis and preclinical evaluation in tumor-bearing mice of a new TKI-PET tracer. Nucl. Med. Biol. 40, 488–497 (2013)PubMed
46.
go back to reference H. Su, Y. Seimbille, G.Z. Ferl et al., Evaluation of [18F]gefitinib as a molecular imaging probe for the assessment of the epidermal growth factor receptor status in malignant tumors. Eur. J. Nucl. Med. Mol. Imaging 35, 1089–1099 (2008)PubMed H. Su, Y. Seimbille, G.Z. Ferl et al., Evaluation of [18F]gefitinib as a molecular imaging probe for the assessment of the epidermal growth factor receptor status in malignant tumors. Eur. J. Nucl. Med. Mol. Imaging 35, 1089–1099 (2008)PubMed
47.
go back to reference Y. Seimbille, F. Bénard, J. Rousseau et al., Impact on estrogen receptor binding and target tissue uptake of [18F]fluorine substitution at the 16alpha-position of fulvestrant (faslodex; ICI 182,780). Nucl. Med. Biol. 31, 691–698 (2004)PubMed Y. Seimbille, F. Bénard, J. Rousseau et al., Impact on estrogen receptor binding and target tissue uptake of [18F]fluorine substitution at the 16alpha-position of fulvestrant (faslodex; ICI 182,780). Nucl. Med. Biol. 31, 691–698 (2004)PubMed
48.
go back to reference D. Yang, L.R. Kuang, A. Cherif et al., Synthesis of [18F]fluoroalanine and [18F]fluorotamoxifen for imaging breast tumors. J. Drug Target. 1, 259–267 (1993)PubMed D. Yang, L.R. Kuang, A. Cherif et al., Synthesis of [18F]fluoroalanine and [18F]fluorotamoxifen for imaging breast tumors. J. Drug Target. 1, 259–267 (1993)PubMed
49.
go back to reference A.A. van der Veldt, E.F. Smit, A.A. Lammertsma, Positron emission tomography as a method for measuring drug delivery to tumors in vivo: the example of [11C]docetaxel. Front Oncol. 13, 103389 (2013) A.A. van der Veldt, E.F. Smit, A.A. Lammertsma, Positron emission tomography as a method for measuring drug delivery to tumors in vivo: the example of [11C]docetaxel. Front Oncol. 13, 103389 (2013)
50.
go back to reference A.A. Lammertsma, C.J. Bench, S.P. Hume et al., Comparison of methods for analysis of clinical [11C]raclopride studies. J. Cereb. Blood Flow Metab. 16, 42–52 (1996)PubMed A.A. Lammertsma, C.J. Bench, S.P. Hume et al., Comparison of methods for analysis of clinical [11C]raclopride studies. J. Cereb. Blood Flow Metab. 16, 42–52 (1996)PubMed
51.
go back to reference R.N. Gunn, S.R. Gunn, V.J. Cunningham, Positron emission tomography compartmental models. J. Cereb. Blood Flow Metab. 21, 635–652 (2001)PubMed R.N. Gunn, S.R. Gunn, V.J. Cunningham, Positron emission tomography compartmental models. J. Cereb. Blood Flow Metab. 21, 635–652 (2001)PubMed
52.
go back to reference A.A. Lammertsma, in Vivo imaging of cancer therapy, ed. by A.F. Shields, P. Price (Humana Press, New Jersey, 2007), pp. 155–167 A.A. Lammertsma, in Vivo imaging of cancer therapy, ed. by A.F. Shields, P. Price (Humana Press, New Jersey, 2007), pp. 155–167
53.
go back to reference M. Yaqub, R. Boellaard, M.A. Kropholler et al., Optimization algorithms and weighting factors for analysis of dynamic PET studies. Phys. Med. Biol. 51, 4217–4232 (2006)PubMed M. Yaqub, R. Boellaard, M.A. Kropholler et al., Optimization algorithms and weighting factors for analysis of dynamic PET studies. Phys. Med. Biol. 51, 4217–4232 (2006)PubMed
54.
go back to reference K.S. Gleisner, M. Nickel, O. Lindén et al., Parametric images of antibody pharmacokinetics based on serial quantitative whole-body imaging and blood sampling. J. Nucl. Med. 48, 1369–1378 (2007)PubMed K.S. Gleisner, M. Nickel, O. Lindén et al., Parametric images of antibody pharmacokinetics based on serial quantitative whole-body imaging and blood sampling. J. Nucl. Med. 48, 1369–1378 (2007)PubMed
55.
go back to reference M.C. Adams, T.G. Turkington, J.M. Wilson et al., A systematic review of the factors affecting accuracy of SUV measurements. AJR Am. J. Roentgenol. 195, 310–320 (2010)PubMed M.C. Adams, T.G. Turkington, J.M. Wilson et al., A systematic review of the factors affecting accuracy of SUV measurements. AJR Am. J. Roentgenol. 195, 310–320 (2010)PubMed
56.
go back to reference I. Bahce, E.F. Smit, M. Lubberink et al., Development of [11C]erlotinib positron emission tomography for in vivo evaluation of EGF receptor mutational status. Clin. Cancer Res. 19, 183–193 (2013)PubMed I. Bahce, E.F. Smit, M. Lubberink et al., Development of [11C]erlotinib positron emission tomography for in vivo evaluation of EGF receptor mutational status. Clin. Cancer Res. 19, 183–193 (2013)PubMed
57.
go back to reference M. Bergström, A. Grahnén, B. Langström, Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development. Eur. J. Clin. Pharmacol. 59, 357–366 (2003)PubMed M. Bergström, A. Grahnén, B. Langström, Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development. Eur. J. Clin. Pharmacol. 59, 357–366 (2003)PubMed
58.
go back to reference A. Saleem, G. Searle, L.M. Kenny et al., Brain and tumor penetration of carbon-11-labeled lapatinib in patients with HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 31(suppl 15), 635 (2013) A. Saleem, G. Searle, L.M. Kenny et al., Brain and tumor penetration of carbon-11-labeled lapatinib in patients with HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 31(suppl 15), 635 (2013)
59.
go back to reference A.J. Fischman, A.A. Bonab, R.H. Rubin, Regional pharmacokinetics of orally administered PET tracers. Curr. Pharm. Des. 6, 1625–1629 (2000)PubMed A.J. Fischman, A.A. Bonab, R.H. Rubin, Regional pharmacokinetics of orally administered PET tracers. Curr. Pharm. Des. 6, 1625–1629 (2000)PubMed
60.
go back to reference J.E. Mortimer, F. Dehdashti, B.A. Siegel et al., Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J. Clin. Oncol. 19, 2797–2803 (2001)PubMed J.E. Mortimer, F. Dehdashti, B.A. Siegel et al., Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J. Clin. Oncol. 19, 2797–2803 (2001)PubMed
61.
go back to reference F. Dehdashti, J.E. Mortimer, K. Trinkaus et al., PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Res. Treat. 113, 509–517 (2009)PubMed F. Dehdashti, J.E. Mortimer, K. Trinkaus et al., PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Res. Treat. 113, 509–517 (2009)PubMed
62.
go back to reference C. Liedtke, K. Broglio, S. Moulder et al., Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer. Ann. Oncol. 20, 1953–1958 (2009)PubMedCentralPubMed C. Liedtke, K. Broglio, S. Moulder et al., Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer. Ann. Oncol. 20, 1953–1958 (2009)PubMedCentralPubMed
63.
go back to reference E. Amir, M. Clemons, C.A. Purdie, Tissue confirmation of disease recurrence in breast cancer patients: pooled analysis of multi-centre, multi-disciplinary prospective studies. Cancer Treat. Rev. 38, 708–714 (2012)PubMed E. Amir, M. Clemons, C.A. Purdie, Tissue confirmation of disease recurrence in breast cancer patients: pooled analysis of multi-centre, multi-disciplinary prospective studies. Cancer Treat. Rev. 38, 708–714 (2012)PubMed
64.
go back to reference T. Foukakis, G. Astrom, L. Lindstrom et al., When to order a biopsy to characterise a metastatic relapse in breast cancer. Ann. Oncol. 23(suppl 10), x349–x353 (2012)PubMed T. Foukakis, G. Astrom, L. Lindstrom et al., When to order a biopsy to characterise a metastatic relapse in breast cancer. Ann. Oncol. 23(suppl 10), x349–x353 (2012)PubMed
65.
go back to reference K. Tamura, H. Kurihara, K. Yonemori et al., 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer. J. Nucl. Med. 51, 1869–1875 (2013) K. Tamura, H. Kurihara, K. Yonemori et al., 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer. J. Nucl. Med. 51, 1869–1875 (2013)
66.
go back to reference J.E. Mortimer, J.R. Bading, D.M. Colcher et al., Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using 64Cu-DOTA-trastuzumab PET. J. Nucl. Med. 55, 23–29 (2014)PubMedCentralPubMed J.E. Mortimer, J.R. Bading, D.M. Colcher et al., Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using 64Cu-DOTA-trastuzumab PET. J. Nucl. Med. 55, 23–29 (2014)PubMedCentralPubMed
67.
go back to reference E.C. Dijkers, T.H. Oude Munnink, J.G. Kosterink et al., Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin. Pharmacol. Ther. 87, 586–592 (2010)PubMed E.C. Dijkers, T.H. Oude Munnink, J.G. Kosterink et al., Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin. Pharmacol. Ther. 87, 586–592 (2010)PubMed
69.
go back to reference S.B. Gaykema, A.H. Brouwers, M.N. Lub-de Hooge et al., 89Zr-bevacizumab PET imaging in primary breast cancer. J. Nucl. Med. 54, 1014–1018 (2013)PubMed S.B. Gaykema, A.H. Brouwers, M.N. Lub-de Hooge et al., 89Zr-bevacizumab PET imaging in primary breast cancer. J. Nucl. Med. 54, 1014–1018 (2013)PubMed
70.
go back to reference A.A. van der Veldt, G. Luurtsema, M. Lubberink et al., Individualized treatment planning in oncology: role of PET and radiolabelled anticancer drugs in predicting tumour resistance. Curr. Pharm. Des. 14, 2914–2931 (2008)PubMed A.A. van der Veldt, G. Luurtsema, M. Lubberink et al., Individualized treatment planning in oncology: role of PET and radiolabelled anticancer drugs in predicting tumour resistance. Curr. Pharm. Des. 14, 2914–2931 (2008)PubMed
71.
go back to reference R. Sharma, R, E. Aboagye. Development of radiotracers for oncology–the interface with pharmacology. Br. J. Pharmacol. 163, 1565–1585 (2011)PubMedCentralPubMed R. Sharma, R, E. Aboagye. Development of radiotracers for oncology–the interface with pharmacology. Br. J. Pharmacol. 163, 1565–1585 (2011)PubMedCentralPubMed
72.
go back to reference A.A. van der Veldt, M. Lubberink, R.H. Mathijssen et al., Toward prediction of efficacy of chemotherapy: a proof of concept study in lung cancer patients using [11C]docetaxel and positron emission tomography. Clin. Cancer Res. 19, 4163–4173 (2013)PubMed A.A. van der Veldt, M. Lubberink, R.H. Mathijssen et al., Toward prediction of efficacy of chemotherapy: a proof of concept study in lung cancer patients using [11C]docetaxel and positron emission tomography. Clin. Cancer Res. 19, 4163–4173 (2013)PubMed
73.
go back to reference M. Moehler, A. Dimitrakopoulou-Strauss, F. Gutzler et al., 18F-labeled fluorouracil positron emission tomography and the prognoses of colorectal carcinoma patients with metastases to the liver treated with 5-fluorouracil. Cancer 83, 245–253 (1998)PubMed M. Moehler, A. Dimitrakopoulou-Strauss, F. Gutzler et al., 18F-labeled fluorouracil positron emission tomography and the prognoses of colorectal carcinoma patients with metastases to the liver treated with 5-fluorouracil. Cancer 83, 245–253 (1998)PubMed
74.
go back to reference T. Inoue, E.E. Kim, S. Wallace et al., Positron emission tomography using [18F]fluorotamoxifen to evaluate therapeutic responses in patients with breast cancer: preliminary study. Cancer Biother. Radiopharm. 11, 235–245 (1996)PubMed T. Inoue, E.E. Kim, S. Wallace et al., Positron emission tomography using [18F]fluorotamoxifen to evaluate therapeutic responses in patients with breast cancer: preliminary study. Cancer Biother. Radiopharm. 11, 235–245 (1996)PubMed
75.
go back to reference N. Godin-Heymann, L. Ulkus, B.W. Brannigan et al., The T790M “gatekeeper” mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor. Mol. Cancer Ther. 7, 874–879 (2008)PubMed N. Godin-Heymann, L. Ulkus, B.W. Brannigan et al., The T790M “gatekeeper” mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor. Mol. Cancer Ther. 7, 874–879 (2008)PubMed
76.
go back to reference A.A. Memon, B. Weber, M. Winterdahl et al., PET imaging of patients with non-small cell lung cancer employing an EGF receptor targeting drug as tracer. Br. J. Cancer 105, 1850–1855 (2011)PubMedCentralPubMed A.A. Memon, B. Weber, M. Winterdahl et al., PET imaging of patients with non-small cell lung cancer employing an EGF receptor targeting drug as tracer. Br. J. Cancer 105, 1850–1855 (2011)PubMedCentralPubMed
77.
go back to reference Y.Y. Janjigian, N. Viola-Villegas, J.P. Holland et al., Monitoring afatinib treatment in HER2-positive gastric cancer with 18F-FDG and 89Zr-trastuzumab PET. J. Nucl. Med. 54, 936–943 (2013)PubMed Y.Y. Janjigian, N. Viola-Villegas, J.P. Holland et al., Monitoring afatinib treatment in HER2-positive gastric cancer with 18F-FDG and 89Zr-trastuzumab PET. J. Nucl. Med. 54, 936–943 (2013)PubMed
78.
go back to reference Y. Miyata, H. Nakamoto, L. Neckers, The therapeutic target Hsp90 and cancer hallmarks. Curr. Pharm. Des. 19, 347–365 (2013)PubMed Y. Miyata, H. Nakamoto, L. Neckers, The therapeutic target Hsp90 and cancer hallmarks. Curr. Pharm. Des. 19, 347–365 (2013)PubMed
79.
go back to reference G. Niu, W. Cai, K. Chen et al., Non-invasive PET imaging of EGFR degradation induced by a heat shock protein 90 inhibitor. Mol. Imaging Biol. 10, 99–106 (2008)PubMed G. Niu, W. Cai, K. Chen et al., Non-invasive PET imaging of EGFR degradation induced by a heat shock protein 90 inhibitor. Mol. Imaging Biol. 10, 99–106 (2008)PubMed
80.
go back to reference G. Niu, Z. Li, Q. Cao et al., Monitoring therapeutic response of human ovarian cancer to 17-DMAG by noninvasive PET imaging with (64)Cu-DOTA-trastuzumab. Eur. J. Nucl. Med. Mol. Imaging 36, 1510–1519 (2009)PubMedCentralPubMed G. Niu, Z. Li, Q. Cao et al., Monitoring therapeutic response of human ovarian cancer to 17-DMAG by noninvasive PET imaging with (64)Cu-DOTA-trastuzumab. Eur. J. Nucl. Med. Mol. Imaging 36, 1510–1519 (2009)PubMedCentralPubMed
81.
go back to reference T.H. Oude Munnink, M.A. Korte, W.B. Nagengast et al., (89)Zr-trastuzumab PET visualises HER2 downregulation by the HSP90 inhibitor NVP-AUY922 in a human tumour xenograft. Eur. J. Cancer 46, 678–684 (2010)PubMed T.H. Oude Munnink, M.A. Korte, W.B. Nagengast et al., (89)Zr-trastuzumab PET visualises HER2 downregulation by the HSP90 inhibitor NVP-AUY922 in a human tumour xenograft. Eur. J. Cancer 46, 678–684 (2010)PubMed
82.
go back to reference W.B. Nagengast, M.A. de Korte, T.H. Oude Munnink et al., 89Zr-bevacizumab PET of early antiangiogenic tumor response to treatment with HSP90 inhibitor NVP-AUY922. J. Nucl. Med. 51, 761–767 (2010)PubMed W.B. Nagengast, M.A. de Korte, T.H. Oude Munnink et al., 89Zr-bevacizumab PET of early antiangiogenic tumor response to treatment with HSP90 inhibitor NVP-AUY922. J. Nucl. Med. 51, 761–767 (2010)PubMed
83.
go back to reference A.J. Chang, R. Sohn, Z. Hong Lu et al., Detection of rapalog-mediated therapeutic response in renal cancer xenogrefts using 64Cu-bevacizumab immunoPET. PLoS One 8, 101371 (2013) A.J. Chang, R. Sohn, Z. Hong Lu et al., Detection of rapalog-mediated therapeutic response in renal cancer xenogrefts using 64Cu-bevacizumab immunoPET. PLoS One 8, 101371 (2013)
84.
go back to reference A.R. van der Bilt, A.G. Terwisscha van Scheltinga, H. Timmer-Bosscha et al., Measurement of tumor VEGF-A levels with 89Zr-bevacizumab PET as an early biomarker for the antiangiogenic effect of everolimus treatment in an ovarian cancer xenograft model. Clin. Cancer Res. 18, 6306–6314 (2012)PubMed A.R. van der Bilt, A.G. Terwisscha van Scheltinga, H. Timmer-Bosscha et al., Measurement of tumor VEGF-A levels with 89Zr-bevacizumab PET as an early biomarker for the antiangiogenic effect of everolimus treatment in an ovarian cancer xenograft model. Clin. Cancer Res. 18, 6306–6314 (2012)PubMed
85.
go back to reference S. Oosting, A.H. Brouwers, S.C. van Es et al., 89Zr-bevacizumab PET imaging in metastatic renal cell carcinoma patients before and during antiangiogenic treatment. J. Clin. Oncol. 30(suppl 15), 10581 (2012) S. Oosting, A.H. Brouwers, S.C. van Es et al., 89Zr-bevacizumab PET imaging in metastatic renal cell carcinoma patients before and during antiangiogenic treatment. J. Clin. Oncol. 30(suppl 15), 10581 (2012)
86.
go back to reference J. Tol, M. Koopman, A. Cats et al., Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N. Engl. J. Med. 360, 563–572 (2009)PubMed J. Tol, M. Koopman, A. Cats et al., Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N. Engl. J. Med. 360, 563–572 (2009)PubMed
87.
go back to reference J.R. Hecht, E. Mitchell, T. Chidiac et al., A randomized phase IIIB trial of chemotherapy, bevacizumab and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J. Clin. Oncol. 27, 672–680 (2009)PubMed J.R. Hecht, E. Mitchell, T. Chidiac et al., A randomized phase IIIB trial of chemotherapy, bevacizumab and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J. Clin. Oncol. 27, 672–680 (2009)PubMed
88.
go back to reference M. Arjaans, T.H. Oude Munnink, S.F. Oosting et al., Bevacizumab-induced normalization of blood vessels in tumors hampers antibody uptake. Cancer Res. 73, 3347–3355 (2013)PubMed M. Arjaans, T.H. Oude Munnink, S.F. Oosting et al., Bevacizumab-induced normalization of blood vessels in tumors hampers antibody uptake. Cancer Res. 73, 3347–3355 (2013)PubMed
89.
go back to reference M.H. Zissen, P. Kunz, M. Subbarayan et al., 18F-5-fluorouracil dynamic positron emission tomography/computed tomography shows decreased tracer activity after bevacizumab in colorectal metastases. Nucl. Med. Commun. 32, 343–347 (2011)PubMed M.H. Zissen, P. Kunz, M. Subbarayan et al., 18F-5-fluorouracil dynamic positron emission tomography/computed tomography shows decreased tracer activity after bevacizumab in colorectal metastases. Nucl. Med. Commun. 32, 343–347 (2011)PubMed
90.
go back to reference A.A.M. van der Veldt, M. Lubberink, I. Bahce et al., Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell 21, 82–91 (2012)PubMed A.A.M. van der Veldt, M. Lubberink, I. Bahce et al., Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell 21, 82–91 (2012)PubMed
91.
go back to reference R.J.A. Harte, J.C. Matthews, S.M. O’Reilly et al., Tumor, normal tissue, and plasma pharmacokinetic studies of fluorouracil biomodulation with n-phosphonacetyl-l-aspartate, folinic acid, and interferon Alfa. J. Clin. Oncol. 17, 1580–1588 (1999)PubMed R.J.A. Harte, J.C. Matthews, S.M. O’Reilly et al., Tumor, normal tissue, and plasma pharmacokinetic studies of fluorouracil biomodulation with n-phosphonacetyl-l-aspartate, folinic acid, and interferon Alfa. J. Clin. Oncol. 17, 1580–1588 (1999)PubMed
92.
go back to reference W. Löscher, H. Potschka, Drug resistance in brain diseases and the role of drug efflux transporters. Nat. Rev. Neurosci. 6, 591–602 (2005)PubMed W. Löscher, H. Potschka, Drug resistance in brain diseases and the role of drug efflux transporters. Nat. Rev. Neurosci. 6, 591–602 (2005)PubMed
93.
go back to reference V.S. Narang, C. Fraga, N. Kumar et al., Dexamethasone increases expression and activity of multidrug resistance transporters at the rat blood–brain barrier. Am. J. Physiol. Cell Physiol. 295, C440–C450 (2008)PubMedCentralPubMed V.S. Narang, C. Fraga, N. Kumar et al., Dexamethasone increases expression and activity of multidrug resistance transporters at the rat blood–brain barrier. Am. J. Physiol. Cell Physiol. 295, C440–C450 (2008)PubMedCentralPubMed
94.
go back to reference M.S. Gordon, K. Margolin, M. Talpaz et al., Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J. Clin. Oncol. 19, 843–818 (2001)PubMed M.S. Gordon, K. Margolin, M. Talpaz et al., Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J. Clin. Oncol. 19, 843–818 (2001)PubMed
95.
go back to reference B. Leyland-Jones, Dose scheduling: herceptin. Oncology 61(suppl 2), 31–36 (2001)PubMed B. Leyland-Jones, Dose scheduling: herceptin. Oncology 61(suppl 2), 31–36 (2001)PubMed
96.
go back to reference J. Baselga, D. Pfister, M.R. Cooper et al., Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J. Clin. Oncol. 18, 904–914 (2000)PubMed J. Baselga, D. Pfister, M.R. Cooper et al., Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J. Clin. Oncol. 18, 904–914 (2000)PubMed
97.
go back to reference L.R. Perk, O.J. Visser, M. Stigter-van Walsum et al., Preparation and evaluation of (89)Zr-Zevalin for monitoring of (90)Y-Zevalin biodistribution with positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 33, 1337–1345 (2006)PubMed L.R. Perk, O.J. Visser, M. Stigter-van Walsum et al., Preparation and evaluation of (89)Zr-Zevalin for monitoring of (90)Y-Zevalin biodistribution with positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 33, 1337–1345 (2006)PubMed
98.
go back to reference S.N. Rizvi, O.J. Visser, M.J. Vosjan et al., Biodistribution, radiation dosimetry and scouting of 90Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin’s lymphoma using 89Zr-ibritumomab tiuxetan and PET. Eur. J. Nucl. Med. Mol. Imaging 39, 512–520 (2012)PubMedCentralPubMed S.N. Rizvi, O.J. Visser, M.J. Vosjan et al., Biodistribution, radiation dosimetry and scouting of 90Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin’s lymphoma using 89Zr-ibritumomab tiuxetan and PET. Eur. J. Nucl. Med. Mol. Imaging 39, 512–520 (2012)PubMedCentralPubMed
99.
go back to reference K. Taniguchi, J. Okami, K. Kodama et al., Intratumor heterogeneity of epidermal growth factor receptor mutations in lung cancer and its correlation to the response to gefitinib. Cancer Sci. 99, 929–935 (2008)PubMed K. Taniguchi, J. Okami, K. Kodama et al., Intratumor heterogeneity of epidermal growth factor receptor mutations in lung cancer and its correlation to the response to gefitinib. Cancer Sci. 99, 929–935 (2008)PubMed
100.
go back to reference S. Artale, A. Sartore-Bianchi, S.M. Veronese et al., Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J. Clin. Oncol. 26, 4217–4219 (2008)PubMed S. Artale, A. Sartore-Bianchi, S.M. Veronese et al., Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J. Clin. Oncol. 26, 4217–4219 (2008)PubMed
101.
go back to reference G. Curigliano, V. Bagnardi, G. Viale et al., Should liver metastases of breast cancer be biopsied to improve treatment choice? Ann. Oncol. 22, 2227–2233 (2011)PubMed G. Curigliano, V. Bagnardi, G. Viale et al., Should liver metastases of breast cancer be biopsied to improve treatment choice? Ann. Oncol. 22, 2227–2233 (2011)PubMed
102.
go back to reference R. Boellaard, M.J. O’Doherty, W.A. Weber et al., FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur. J. Nucl. Med. Mol. Imaging 37, 181–200 (2010)PubMedCentralPubMed R. Boellaard, M.J. O’Doherty, W.A. Weber et al., FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur. J. Nucl. Med. Mol. Imaging 37, 181–200 (2010)PubMedCentralPubMed
103.
go back to reference R.L. Wahl, H. Jacene, Y. Kasamon et al., From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J. Nucl. Med. 50(Suppl 1), 122S–150S (2009)PubMedCentralPubMed R.L. Wahl, H. Jacene, Y. Kasamon et al., From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J. Nucl. Med. 50(Suppl 1), 122S–150S (2009)PubMedCentralPubMed
104.
go back to reference S.J. O'Day, O. Hamid, W.J. Urba, Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): a novel strategy for the treatment of melanoma and other malignancies. Cancer 110, 2614–2627 (2007)PubMed S.J. O'Day, O. Hamid, W.J. Urba, Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): a novel strategy for the treatment of melanoma and other malignancies. Cancer 110, 2614–2627 (2007)PubMed
105.
go back to reference D.J. Yang, C. Li, L.R. Kuang et al., Imaging, biodistribution and therapy potential of halogenated tamoxifen analogues. Life Sci. 55, 53–67 (1994)PubMed D.J. Yang, C. Li, L.R. Kuang et al., Imaging, biodistribution and therapy potential of halogenated tamoxifen analogues. Life Sci. 55, 53–67 (1994)PubMed
106.
go back to reference J.R. Petrulli, J.M. Sullivan, M.Q. Zheng et al., Quantitative analysis of [(11)C]-Erlotinib PET demonstrates specific binding for activating mutations of the EGFR kinase domain. Neoplasia 15, 1347–1353 (2013)PubMedCentralPubMed J.R. Petrulli, J.M. Sullivan, M.Q. Zheng et al., Quantitative analysis of [(11)C]-Erlotinib PET demonstrates specific binding for activating mutations of the EGFR kinase domain. Neoplasia 15, 1347–1353 (2013)PubMedCentralPubMed
107.
go back to reference M.R. Zhang, K. Kumata, A. Hatori et al., [11C]Gefitinib ([11c]Iressa): radiosynthesis, in vitro uptake, and in vivo imaging of intact murine fibrosarcoma. Mol. Imaging Biol. 12, 181–191 (2010)PubMed M.R. Zhang, K. Kumata, A. Hatori et al., [11C]Gefitinib ([11c]Iressa): radiosynthesis, in vitro uptake, and in vivo imaging of intact murine fibrosarcoma. Mol. Imaging Biol. 12, 181–191 (2010)PubMed
108.
go back to reference K. Kawamura, T. Yamasaki, J. Yui et al., In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using [(11)C]gefitinib. Nucl. Med. Biol. 36, 239–246 (2009)PubMed K. Kawamura, T. Yamasaki, J. Yui et al., In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using [(11)C]gefitinib. Nucl. Med. Biol. 36, 239–246 (2009)PubMed
109.
go back to reference K.E. Kil, Y.S. Ding, K.S. Lin et al., Synthesis and positron emission tomography studies of carbon-11-labeled imatinib (Gleevec). Nucl. Med. Biol. 34, 153–163 (2007)PubMedCentralPubMed K.E. Kil, Y.S. Ding, K.S. Lin et al., Synthesis and positron emission tomography studies of carbon-11-labeled imatinib (Gleevec). Nucl. Med. Biol. 34, 153–163 (2007)PubMedCentralPubMed
110.
go back to reference F. Basuli, H. Wu, C. Li et al., A first synthesis of 18F-radiolabeled lapatinib: a potential tracer for positron emission tomographic imaging of ErbB1/ErbB2 tyrosine kinase activity. J. Label. Compd. Radiopharm. 54, 633–636 (2011) F. Basuli, H. Wu, C. Li et al., A first synthesis of 18F-radiolabeled lapatinib: a potential tracer for positron emission tomographic imaging of ErbB1/ErbB2 tyrosine kinase activity. J. Label. Compd. Radiopharm. 54, 633–636 (2011)
111.
go back to reference C. Asakawa, M. Ogawa, K. Kumata et al., [11C]sorafenib: radiosynthesis and preliminary PET study of brain uptake in P-gp/Bcrp knockout mice. Bioorg. Med. Chem. Lett. 21, 2220–2223 (2011)PubMed C. Asakawa, M. Ogawa, K. Kumata et al., [11C]sorafenib: radiosynthesis and preliminary PET study of brain uptake in P-gp/Bcrp knockout mice. Bioorg. Med. Chem. Lett. 21, 2220–2223 (2011)PubMed
112.
go back to reference J.Q. Wang, K.D. Miller, G.W. Sledge et al., Synthesis of [18F]SU11248, a new potential PET tracer for imaging cancer tyrosine kinase. Bioorg. Med. Chem. Lett. 15, 4380–4384 (2005)PubMed J.Q. Wang, K.D. Miller, G.W. Sledge et al., Synthesis of [18F]SU11248, a new potential PET tracer for imaging cancer tyrosine kinase. Bioorg. Med. Chem. Lett. 15, 4380–4384 (2005)PubMed
113.
go back to reference M. Gao, C.M. Lola, M. Wang et al., Radiosynthesis of [11C]Vandetanib and [11C]chloro-Vandetanib as new potential PET agents for imaging of VEGFR in cancer. Bioorg. Med. Chem. Lett. 21, 3222–3226 (2011)PubMed M. Gao, C.M. Lola, M. Wang et al., Radiosynthesis of [11C]Vandetanib and [11C]chloro-Vandetanib as new potential PET agents for imaging of VEGFR in cancer. Bioorg. Med. Chem. Lett. 21, 3222–3226 (2011)PubMed
114.
go back to reference B. Paudyal, P. Paudyal, N. Oriuchi et al., Positron emission tomography imaging and biodistribution of vascular endothelial growth factor with 64Cu-labeled bevacizumab in colorectal cancer xenografts. Cancer Sci. 102, 117–121 (2011)PubMed B. Paudyal, P. Paudyal, N. Oriuchi et al., Positron emission tomography imaging and biodistribution of vascular endothelial growth factor with 64Cu-labeled bevacizumab in colorectal cancer xenografts. Cancer Sci. 102, 117–121 (2011)PubMed
115.
go back to reference T.K. Nayak, K. Garmestani, K.E. Baidoo et al., PET imaging of tumor angiogenesis in mice with VEGF-A-targeted (86)Y-CHX-A″-DTPA-bevacizumab. Int. J. Cancer 128, 920–926 (2011)PubMedCentralPubMed T.K. Nayak, K. Garmestani, K.E. Baidoo et al., PET imaging of tumor angiogenesis in mice with VEGF-A-targeted (86)Y-CHX-A″-DTPA-bevacizumab. Int. J. Cancer 128, 920–926 (2011)PubMedCentralPubMed
116.
go back to reference W.B. Nagengast, E.G. de Vries, G.A. Hospers et al., In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J. Nucl. Med. 48, 1313–1319 (2007)PubMed W.B. Nagengast, E.G. de Vries, G.A. Hospers et al., In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J. Nucl. Med. 48, 1313–1319 (2007)PubMed
117.
go back to reference W. Ping Li, L.A. Meyer, D.A. Capretto et al., Receptor-binding, biodistribution, and metabolism studies of 64Cu-DOTA-cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors. Cancer Biother. Radiopharm. 23, 158–171 (2008)PubMed W. Ping Li, L.A. Meyer, D.A. Capretto et al., Receptor-binding, biodistribution, and metabolism studies of 64Cu-DOTA-cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors. Cancer Biother. Radiopharm. 23, 158–171 (2008)PubMed
118.
go back to reference M. Eiblmaier, L.A. Meyer, M.A. Watson et al., Correlating EGFR expression with receptor-binding properties and internalization of 64Cu-DOTA-cetuximab in 5 cervical cancer cell lines. J. Nucl. Med. 49, 1472–1479 (2008)PubMedCentralPubMed M. Eiblmaier, L.A. Meyer, M.A. Watson et al., Correlating EGFR expression with receptor-binding properties and internalization of 64Cu-DOTA-cetuximab in 5 cervical cancer cell lines. J. Nucl. Med. 49, 1472–1479 (2008)PubMedCentralPubMed
119.
go back to reference G. Niu, X. Sun, Q. Cao et al., Cetuximab-based immunotherapy and radioimmunotherapy of head and neck squamous cell carcinoma. Clin. Cancer Res. 16, 2095–2105 (2010)PubMedCentralPubMed G. Niu, X. Sun, Q. Cao et al., Cetuximab-based immunotherapy and radioimmunotherapy of head and neck squamous cell carcinoma. Clin. Cancer Res. 16, 2095–2105 (2010)PubMedCentralPubMed
120.
go back to reference A. Achmad, H. Hanaoka, H. Yoshioka et al., Predicting cetuximab accumulation in KRAS wild-type and KRAS mutant colorectal cancer using 64Cu-labeled cetuximab positron emission tomography. Cancer Sci. 103, 600–605 (2012)PubMed A. Achmad, H. Hanaoka, H. Yoshioka et al., Predicting cetuximab accumulation in KRAS wild-type and KRAS mutant colorectal cancer using 64Cu-labeled cetuximab positron emission tomography. Cancer Sci. 103, 600–605 (2012)PubMed
121.
go back to reference T.K. Nayak, C.A. Regino, K.J. Wong et al., PET imaging of HER1-expressing xenografts in mice with 86Y-CHX-A''-DTPA-cetuximab. Eur. J. Nucl. Med. Mol. Imaging 37, 1368–1376 (2010)PubMedCentralPubMed T.K. Nayak, C.A. Regino, K.J. Wong et al., PET imaging of HER1-expressing xenografts in mice with 86Y-CHX-A''-DTPA-cetuximab. Eur. J. Nucl. Med. Mol. Imaging 37, 1368–1376 (2010)PubMedCentralPubMed
122.
go back to reference T.K. Nayak, K. Garmestani, D.E. Milenic et al., HER1-targeted 86Y-panitumumab possesses superior targeting characteristics than 86Y-cetuximab for PET imaging of human malignant mesothelioma tumors xenografts. PLoS One 25, 101371 (2011) T.K. Nayak, K. Garmestani, D.E. Milenic et al., HER1-targeted 86Y-panitumumab possesses superior targeting characteristics than 86Y-cetuximab for PET imaging of human malignant mesothelioma tumors xenografts. PLoS One 25, 101371 (2011)
123.
go back to reference L.R. Perk, G.W. Visser, M.J. Vosjan et al., (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J. Nucl. Med. 46, 1898–1906 (2005)PubMed L.R. Perk, G.W. Visser, M.J. Vosjan et al., (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J. Nucl. Med. 46, 1898–1906 (2005)PubMed
124.
go back to reference G. Niu, Z. Li, J. Xie et al., PET of EGFR antibody distribution in head and neck squamous cell carcinoma models. J. Nucl. Med. 50, 1116–1123 (2009)PubMed G. Niu, Z. Li, J. Xie et al., PET of EGFR antibody distribution in head and neck squamous cell carcinoma models. J. Nucl. Med. 50, 1116–1123 (2009)PubMed
125.
go back to reference T.K. Nayak, K. Garmestani, K.E. Baidoo et al., Preparation, biological evaluation, and pharmacokinetics of the human anti-HER1 monoclonal antibody panitumumab labeled with 86Y for quantitative PET of carcinoma. J. Nucl. Med. 51, 942–950 (2010)PubMedCentralPubMed T.K. Nayak, K. Garmestani, K.E. Baidoo et al., Preparation, biological evaluation, and pharmacokinetics of the human anti-HER1 monoclonal antibody panitumumab labeled with 86Y for quantitative PET of carcinoma. J. Nucl. Med. 51, 942–950 (2010)PubMedCentralPubMed
126.
go back to reference T.K. Nayak, K. Garmestani, D.E. Milenic et al., PET and MRI of metastatic peritoneal and pulmonary colorectal cancer in mice with human epidermal growth factor receptor 1-targeted 89Zr-labeled panitumumab. J. Nucl. Med. 53, 113–120 (2012)PubMedCentralPubMed T.K. Nayak, K. Garmestani, D.E. Milenic et al., PET and MRI of metastatic peritoneal and pulmonary colorectal cancer in mice with human epidermal growth factor receptor 1-targeted 89Zr-labeled panitumumab. J. Nucl. Med. 53, 113–120 (2012)PubMedCentralPubMed
127.
go back to reference A.J. Chang, R.A. De Silva, S.E. Lapi, PET and MRI of metastatic peritoneal and pulmonary colorectal cancer in mice with human epidermal growth factor receptor 1-targeted 89Zr-labeled panitumumab. Mol. Imaging 12, 17–27 (2013)PubMedCentralPubMed A.J. Chang, R.A. De Silva, S.E. Lapi, PET and MRI of metastatic peritoneal and pulmonary colorectal cancer in mice with human epidermal growth factor receptor 1-targeted 89Zr-labeled panitumumab. Mol. Imaging 12, 17–27 (2013)PubMedCentralPubMed
128.
go back to reference S. Bhattacharyya, K. Kurdziel, L. Wei et al., Zirconium-89 labeled panitumumab: a potential immuno-PET probe for HER1-expressing carcinomas. Nucl. Med. Biol. 40, 451–457 (2013)PubMedCentralPubMed S. Bhattacharyya, K. Kurdziel, L. Wei et al., Zirconium-89 labeled panitumumab: a potential immuno-PET probe for HER1-expressing carcinomas. Nucl. Med. Biol. 40, 451–457 (2013)PubMedCentralPubMed
129.
go back to reference A. Natarajan, G. Gowrishankar, C.H. Nielsen et al., Positron emission tomography of 64Cu-DOTA-Rituximab in a transgenic mouse model expressing human CD20 for clinical translation to image NHL. Mol. Imaging Biol. 14, 608–616 (2012)PubMed A. Natarajan, G. Gowrishankar, C.H. Nielsen et al., Positron emission tomography of 64Cu-DOTA-Rituximab in a transgenic mouse model expressing human CD20 for clinical translation to image NHL. Mol. Imaging Biol. 14, 608–616 (2012)PubMed
130.
go back to reference A. Natarajan, F. Habte, H. Liu et al., Evaluation of 89Zr-rituximab tracer by Cerenkov luminescence imaging and correlation with PET in a humanized transgenic mouse model to image NHL. Mol. Imaging Biol. 15, 468–475 (2013)PubMed A. Natarajan, F. Habte, H. Liu et al., Evaluation of 89Zr-rituximab tracer by Cerenkov luminescence imaging and correlation with PET in a humanized transgenic mouse model to image NHL. Mol. Imaging Biol. 15, 468–475 (2013)PubMed
131.
go back to reference E. Mume, A. Orlova, P.U. Malmström et al., Radiobromination of humanized anti-HER2 monoclonal antibody trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate, a potential label for immunoPET. Nucl. Med. Biol. 32, 613–622 (2005)PubMed E. Mume, A. Orlova, P.U. Malmström et al., Radiobromination of humanized anti-HER2 monoclonal antibody trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate, a potential label for immunoPET. Nucl. Med. Biol. 32, 613–622 (2005)PubMed
132.
go back to reference E.C. Dijkers, J.G. Kosterink, A.P. Rademaker et al., Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J. Nucl. Med. 50, 974–981 (2009)PubMed E.C. Dijkers, J.G. Kosterink, A.P. Rademaker et al., Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J. Nucl. Med. 50, 974–981 (2009)PubMed
133.
go back to reference A.J. Chang, R. Desilva, S. Jain et al., 89Zr-radiolabeled trastuzumab imaging in orthotopic and metastatic breast tumors. Pharm. (Basel). 5, 79–93 (2012) A.J. Chang, R. Desilva, S. Jain et al., 89Zr-radiolabeled trastuzumab imaging in orthotopic and metastatic breast tumors. Pharm. (Basel). 5, 79–93 (2012)
Metadata
Title
Molecular imaging of targeted therapies with positron emission tomography: the visualization of personalized cancer care
Authors
Lemonitsa H. Mammatas
Henk M. W. Verheul
N. Harry Hendrikse
Maqsood Yaqub
Adriaan A. Lammertsma
C. Willemien Menke-van der Houven van Oordt
Publication date
01-02-2015
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 1/2015
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-014-0194-4

Other articles of this Issue 1/2015

Cellular Oncology 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine