Skip to main content
Top
Published in: EJNMMI Research 1/2015

Open Access 01-12-2015 | Original research

Perfusion vector—a new method to quantify myocardial perfusion scintigraphy images: a simulation study with validation in patients

Authors: David Minarik, Martin Senneby, Per Wollmer, Alva Mansten, Karl Sjöstrand, Lars Edenbrandt, Elin Trägårdh

Published in: EJNMMI Research | Issue 1/2015

Login to get access

Abstract

Background

The interpretation of myocardial perfusion scintigraphy (MPS) largely relies on visual assessment by the physician of the localization and extent of a perfusion defect. The aim of this study was to introduce the concept of the perfusion vector as a new objective quantitative method for further assisting the visual interpretation and to test the concept using simulated MPS images as well as patients.

Methods

The perfusion vector is based on calculating the difference between the anatomical centroid and the perfusion center of gravity of the left ventricle. Simulated MPS images were obtained using the SIMIND Monte Carlo program together with XCAT phantom. Four different-sized anterior and four lateral defects were simulated, and perfusion vector components x-, y-, and z-axes were calculated. For the patient study, 40 normal and 80 abnormal studies were included. Perfusion vectors were compared between normal and abnormal (apical, inferior, anterior, and lateral ischemia or infarction) studies and also correlated to the defect size.

Results

For simulated anterior defects, the stress perfusion vector component on the y-axis (anterior-inferior direction) increased in proportion to the defect size. For the simulated lateral defects, the stress perfusion vector component on the x-axis (septal-lateral direction) decreased in proportion to the defect size. When comparing normal and abnormal patients, there was a statistically significant difference for the stress perfusion vector on the x-axis for apical and lateral defects; on the y-axis for apical, inferior, and lateral defects; and on the z-axis (basal-apical direction) for apical, anterior, and lateral defects. A significant difference was shown for the difference vector magnitude (stress/rest) between normal and ischemic patients (p = 0.001) but not for patients with infarction. The correlation between the defect size and stress vector magnitude was also found to be significant (p < 0.001).

Conclusions

The concept of the perfusion vector introduced in this study is shown to have potential in assisting the visual interpretation in MPS studies. Further studies are needed to validate the concept in patients.
Literature
1.
go back to reference Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation. 1998;97(6):535–43.CrossRefPubMed Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation. 1998;97(6):535–43.CrossRefPubMed
2.
go back to reference Hachamovitch R, Berman DS, Kiat H, Cohen I, Cabico JA, Friedman J, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation. 1996;93(5):905–14.CrossRefPubMed Hachamovitch R, Berman DS, Kiat H, Cohen I, Cabico JA, Friedman J, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation. 1996;93(5):905–14.CrossRefPubMed
3.
go back to reference Hachamovitch R, Rozanski A, Shaw LJ, Stone GW, Thomson LE, Friedman JD, et al. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J. 2011;32(8):1012–24. doi:10.1093/eurheartj/ehq500.CrossRefPubMed Hachamovitch R, Rozanski A, Shaw LJ, Stone GW, Thomson LE, Friedman JD, et al. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J. 2011;32(8):1012–24. doi:10.​1093/​eurheartj/​ehq500.CrossRefPubMed
4.
go back to reference Iskander S, Iskandrian AE. Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol. 1998;32(1):57–62.CrossRefPubMed Iskander S, Iskandrian AE. Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol. 1998;32(1):57–62.CrossRefPubMed
7.
go back to reference Guner LA, Karabacak NI, Cakir T, Akdemir OU, Kocaman SA, Cengel A, et al. Comparison of diagnostic performances of three different software packages in detecting coronary artery disease. Eur J Nucl Med Mol Imaging. 2010;37(11):2070–8. doi:10.1007/s00259-010-1522-1.CrossRefPubMed Guner LA, Karabacak NI, Cakir T, Akdemir OU, Kocaman SA, Cengel A, et al. Comparison of diagnostic performances of three different software packages in detecting coronary artery disease. Eur J Nucl Med Mol Imaging. 2010;37(11):2070–8. doi:10.​1007/​s00259-010-1522-1.CrossRefPubMed
11.
go back to reference Ljungberg M, Strand SE. A Monte Carlo program for the simulation of scintillation camera characteristics. Comput Methods Programs Biomed. 1989;29(4):257–72.CrossRefPubMed Ljungberg M, Strand SE. A Monte Carlo program for the simulation of scintillation camera characteristics. Comput Methods Programs Biomed. 1989;29(4):257–72.CrossRefPubMed
Metadata
Title
Perfusion vector—a new method to quantify myocardial perfusion scintigraphy images: a simulation study with validation in patients
Authors
David Minarik
Martin Senneby
Per Wollmer
Alva Mansten
Karl Sjöstrand
Lars Edenbrandt
Elin Trägårdh
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2015
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-015-0121-3

Other articles of this Issue 1/2015

EJNMMI Research 1/2015 Go to the issue