Skip to main content
Top
Published in: EJNMMI Research 1/2015

Open Access 01-12-2015 | Research article

Metabolically active tumour volume segmentation from dynamic [18F]FLT PET studies in non-small cell lung cancer

Authors: Lieke L Hoyng, Virginie Frings, Otto S Hoekstra, Laura M Kenny, Eric O Aboagye, Ronald Boellaard

Published in: EJNMMI Research | Issue 1/2015

Login to get access

Abstract

Background

Positron emission tomography (PET) with 18F-3′-deoxy-3′-fluorothymidine ([18F]FLT) can be used to assess tumour proliferation. A kinetic-filtering (KF) classification algorithm has been suggested for segmentation of tumours in dynamic [18F]FLT PET data. The aim of the present study was to evaluate KF segmentation and its test-retest performance in [18F]FLT PET in non-small cell lung cancer (NSCLC) patients.

Methods

Nine NSCLC patients underwent two 60-min dynamic [18F]FLT PET scans within 7 days prior to treatment. Dynamic scans were reconstructed with filtered back projection (FBP) as well as with ordered subsets expectation maximisation (OSEM). Twenty-eight lesions were identified by an experienced physician. Segmentation was performed using KF applied to the dynamic data set and a source-to-background corrected 50% threshold (A50%) was applied to the sum image of the last three frames (45- to 60-min p.i.). Furthermore, several adaptations of KF were tested. Both for KF and A50% test-retest (TRT) variability of metabolically active tumour volume and standard uptake value (SUV) were evaluated.

Results

KF performed better on OSEM- than on FBP-reconstructed PET images. The original KF implementation segmented 15 out of 28 lesions, whereas A50% segmented each lesion. Adapted KF versions, however, were able to segment 26 out of 28 lesions. In the best performing adapted versions, metabolically active tumour volume and SUV TRT variability was similar to those of A50%. KF misclassified certain tumour areas as vertebrae or liver tissue, which was shown to be related to heterogeneous [18F]FLT uptake areas within the tumour.

Conclusions

For [18F]FLT PET studies in NSCLC patients, KF and A50% show comparable tumour volume segmentation performance. The KF method needs, however, a site-specific optimisation. The A50% is therefore a good alternative for tumour segmentation in NSCLC [18F]FLT PET studies in multicentre studies. Yet, it was observed that KF has the potential to subsegment lesions in high and low proliferative areas.
Literature
1.
go back to reference De Langen AJ, Klabbers B, Lubberink M, Boellaard R, Spreeuwenberg MD, Slotman BJ, et al. Reproducibility Of quantitative 18F-3-deoxy-3-fluorothymidine measurements using positron emission tomography. Eur J Nucl Med Mol Imaging. 2009;36:389–95.CrossRefPubMed De Langen AJ, Klabbers B, Lubberink M, Boellaard R, Spreeuwenberg MD, Slotman BJ, et al. Reproducibility Of quantitative 18F-3-deoxy-3-fluorothymidine measurements using positron emission tomography. Eur J Nucl Med Mol Imaging. 2009;36:389–95.CrossRefPubMed
2.
go back to reference Hoeben BAW, Troost EGC, Span PN, Van Herpen CML, Bussink J, Oyen WJG, et al. 18F-FLT PET during radiotherapy or chemoradiotherapy in head and neck squamous cell carcinoma is an early predictor of outcome. J Nucl Med. 2013;54:532–40.CrossRefPubMed Hoeben BAW, Troost EGC, Span PN, Van Herpen CML, Bussink J, Oyen WJG, et al. 18F-FLT PET during radiotherapy or chemoradiotherapy in head and neck squamous cell carcinoma is an early predictor of outcome. J Nucl Med. 2013;54:532–40.CrossRefPubMed
3.
go back to reference Contractor KB, Kenny LM, Stebbing J, Rosso L, Ahmad R, Jacob J, et al. [18F]-3′deoxy-3′-fluorothymidine positron emission tomography and breast cancer response to docetaxel. Clin Cancer Res. 2011;17:7664–72.CrossRefPubMed Contractor KB, Kenny LM, Stebbing J, Rosso L, Ahmad R, Jacob J, et al. [18F]-3′deoxy-3′-fluorothymidine positron emission tomography and breast cancer response to docetaxel. Clin Cancer Res. 2011;17:7664–72.CrossRefPubMed
4.
go back to reference Frings V, Van Der Veldt A, Boellaard R, Herder GJM, Giovannetti E, Honeywell R, et al. Pemetrexed induced thymidylate synthase inhibition in non-small cell lung cancer in vivo: a pilot study with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Plos One. 2013;8:E63705.CrossRefPubMedCentralPubMed Frings V, Van Der Veldt A, Boellaard R, Herder GJM, Giovannetti E, Honeywell R, et al. Pemetrexed induced thymidylate synthase inhibition in non-small cell lung cancer in vivo: a pilot study with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Plos One. 2013;8:E63705.CrossRefPubMedCentralPubMed
5.
go back to reference Kenny LM, Coombes CR, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO. Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging. 2007;34:1339–47.CrossRefPubMed Kenny LM, Coombes CR, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO. Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging. 2007;34:1339–47.CrossRefPubMed
6.
go back to reference Cheebsumon P, Van Velden FH, Yaqub M, Frings V, Lammertsma AA, Boellaard R. Effects of image characteristics on performance of tumor delineation methods: a test–retest assessment. J Nucl Med. 2011;52:1550–8.CrossRefPubMed Cheebsumon P, Van Velden FH, Yaqub M, Frings V, Lammertsma AA, Boellaard R. Effects of image characteristics on performance of tumor delineation methods: a test–retest assessment. J Nucl Med. 2011;52:1550–8.CrossRefPubMed
7.
go back to reference Shepherd T, Teräs M, Beichel RR, Boellaard R, Bruynooghe M, Dicken V, et al. Comparative study with new accuracy metrics for target volume contouring in pet image guided radiation therapy. IEEE Trans Med Imag. 2012;31:2006–24.CrossRef Shepherd T, Teräs M, Beichel RR, Boellaard R, Bruynooghe M, Dicken V, et al. Comparative study with new accuracy metrics for target volume contouring in pet image guided radiation therapy. IEEE Trans Med Imag. 2012;31:2006–24.CrossRef
8.
go back to reference Hatt M, Cheze-Le Rest C, Aboagye EO, Kenny LM, Rosso L, Turkheimer FE, et al. Reproducibility of 18F-FDG and 39-deoxy-39-18F-fluorothymidine PET tumor volume measurements. J Nucl Med. 2010;51:1368–76.CrossRefPubMed Hatt M, Cheze-Le Rest C, Aboagye EO, Kenny LM, Rosso L, Turkheimer FE, et al. Reproducibility of 18F-FDG and 39-deoxy-39-18F-fluorothymidine PET tumor volume measurements. J Nucl Med. 2010;51:1368–76.CrossRefPubMed
9.
go back to reference Tomasi G, Shepherd T, Turkheimer FE, Visvikis D, Aboagye EO. Comparative assessment of segmentation algorithms for tumor delineation on a test-retest [11C]choline dataset. Med Phys. 2012;39:7571–9.CrossRefPubMed Tomasi G, Shepherd T, Turkheimer FE, Visvikis D, Aboagye EO. Comparative assessment of segmentation algorithms for tumor delineation on a test-retest [11C]choline dataset. Med Phys. 2012;39:7571–9.CrossRefPubMed
10.
go back to reference Gray KR, Contractor KB, Kenny LM, Al-Nahhas A, Shousha S, Stebbing J, et al. Kinetic filtering Of [18F]fluorothymidine in positron emission tomography studies. Phys Med Biol. 2010;55:695–709.CrossRefPubMed Gray KR, Contractor KB, Kenny LM, Al-Nahhas A, Shousha S, Stebbing J, et al. Kinetic filtering Of [18F]fluorothymidine in positron emission tomography studies. Phys Med Biol. 2010;55:695–709.CrossRefPubMed
11.
go back to reference Turkheimer F, Edison P, Pavese N, Roncaroli F, Anderson A, Hammers A, et al. Reference and target region modeling of [11C]-(R)-PK11195 brain studies. J Nucl Med. 2007;48:158–67.PubMed Turkheimer F, Edison P, Pavese N, Roncaroli F, Anderson A, Hammers A, et al. Reference and target region modeling of [11C]-(R)-PK11195 brain studies. J Nucl Med. 2007;48:158–67.PubMed
12.
go back to reference Frings V, De Langen AJ, Smit E, Van Velden FH, Hoekstra O, Van Tinteren H, et al. Repeatability of metabolically active volume measurements with 18F-FDG and 18F-FLT PET in non-small cell lung cancer. J Nucl Med. 2010;51:1870–7.CrossRefPubMed Frings V, De Langen AJ, Smit E, Van Velden FH, Hoekstra O, Van Tinteren H, et al. Repeatability of metabolically active volume measurements with 18F-FDG and 18F-FLT PET in non-small cell lung cancer. J Nucl Med. 2010;51:1870–7.CrossRefPubMed
13.
go back to reference Mahalanobis PC. On the generalized distance in statistics. Proc Nat Inst Sci. 1936;2:49–55. Mahalanobis PC. On the generalized distance in statistics. Proc Nat Inst Sci. 1936;2:49–55.
14.
go back to reference Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45:1519–27.PubMed Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45:1519–27.PubMed
15.
go back to reference Krak NC, Boellaard R, Hoekstra OS, Twisk JWR, Hoekstra CJ, Lammertsma AA. Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging. 2005;32:249–301.CrossRef Krak NC, Boellaard R, Hoekstra OS, Twisk JWR, Hoekstra CJ, Lammertsma AA. Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging. 2005;32:249–301.CrossRef
16.
go back to reference Cheebsumon P, Van Velden FH, Yaqub M, Hoekstra CJ, Velasquez LM, Hayes W, et al. Measurement of metabolic tumor volume: static versus dynamic FDG scans. EJNMMI Res. 2011;14:1–35. Cheebsumon P, Van Velden FH, Yaqub M, Hoekstra CJ, Velasquez LM, Hayes W, et al. Measurement of metabolic tumor volume: static versus dynamic FDG scans. EJNMMI Res. 2011;14:1–35.
17.
go back to reference Frings V, De Langen AJ, Yaqub M, Schuit RC, Van Der Veldt A, Hoekstra O, et al. Methodological considerations in quantification of 3′-deoxy-3′-[18F]fluorothymidine uptake measured with positron emission tomography in patients with non-small cell lung cancer. Mol Imaging Biol. 2014;16:136–45.CrossRefPubMed Frings V, De Langen AJ, Yaqub M, Schuit RC, Van Der Veldt A, Hoekstra O, et al. Methodological considerations in quantification of 3′-deoxy-3′-[18F]fluorothymidine uptake measured with positron emission tomography in patients with non-small cell lung cancer. Mol Imaging Biol. 2014;16:136–45.CrossRefPubMed
18.
go back to reference Frings V, Yaqub M, Hoyng LL, Golla SV, Windhorst A, Schuit RC, et al. Assessment of simplified methods to measure 3′deoxy-3′-[18F]fluorothymidine uptake changes in EGFR mutated non-small cell lung cancer patients undergoing EGFR tyrosine kinase inhibitor treatment. J Nucl Med. 2014;55:1417–23.CrossRefPubMed Frings V, Yaqub M, Hoyng LL, Golla SV, Windhorst A, Schuit RC, et al. Assessment of simplified methods to measure 3′deoxy-3′-[18F]fluorothymidine uptake changes in EGFR mutated non-small cell lung cancer patients undergoing EGFR tyrosine kinase inhibitor treatment. J Nucl Med. 2014;55:1417–23.CrossRefPubMed
19.
go back to reference Muzi M, Mankoff DA, Grierson JR, Wells JM, Vesselle H, Krohn KA. Kinetic modeling Of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med. 2005;46:371–80.PubMed Muzi M, Mankoff DA, Grierson JR, Wells JM, Vesselle H, Krohn KA. Kinetic modeling Of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med. 2005;46:371–80.PubMed
20.
go back to reference Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2013;144:646–74.CrossRef Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2013;144:646–74.CrossRef
21.
go back to reference Thorwarth D, Geets X, Paiusco M. Physical radiotherapy treatment planning based on functional PET/CT data. Radiother And Onc. 2010;96:317–24.CrossRef Thorwarth D, Geets X, Paiusco M. Physical radiotherapy treatment planning based on functional PET/CT data. Radiother And Onc. 2010;96:317–24.CrossRef
22.
go back to reference Gottesman MM, Foho T, Bates SE. Multidrug resistance in cancer: role of ATP–dependent transporters. Nature Rev Cancer. 2002;2:48–58.CrossRef Gottesman MM, Foho T, Bates SE. Multidrug resistance in cancer: role of ATP–dependent transporters. Nature Rev Cancer. 2002;2:48–58.CrossRef
23.
go back to reference Willaime JMY, Turkheimer FE, Kenny LM, Aboagye EO. Quantification of intra-tumour cell proliferation heterogeneity using imaging descriptors of 18F fluorothymidine-positron emission tomography. Phys Med Biol. 2013;58:187–203.CrossRefPubMed Willaime JMY, Turkheimer FE, Kenny LM, Aboagye EO. Quantification of intra-tumour cell proliferation heterogeneity using imaging descriptors of 18F fluorothymidine-positron emission tomography. Phys Med Biol. 2013;58:187–203.CrossRefPubMed
Metadata
Title
Metabolically active tumour volume segmentation from dynamic [18F]FLT PET studies in non-small cell lung cancer
Authors
Lieke L Hoyng
Virginie Frings
Otto S Hoekstra
Laura M Kenny
Eric O Aboagye
Ronald Boellaard
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2015
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-015-0102-6

Other articles of this Issue 1/2015

EJNMMI Research 1/2015 Go to the issue