Skip to main content
Top
Published in: EJNMMI Research 1/2015

Open Access 01-12-2015 | Original research

[18F]FDG-6-P as a novel in vivo tool for imaging staphylococcal infections

Authors: Bethany Mills, Ramla O Awais, Jeni Luckett, Dave Turton, Paul Williams, Alan C Perkins, Philip J Hill

Published in: EJNMMI Research | Issue 1/2015

Login to get access

Abstract

Background

Management of infection is a major clinical problem. Staphylococcus aureus is a Gram-positive bacterium which colonises approximately one third of the adult human population. Staphylococcal infections can be life-threatening and are frequently complicated by multi-antibiotic resistant strains including methicillin-resistant S. aureus (MRSA). Fluorodeoxyglucose ([18F]FDG) imaging has been used to identify infection sites; however, it is unable to distinguish between sterile inflammation and bacterial load. We have modified [18F]FDG by phosphorylation, producing [18F]FDG-6-P to facilitate specific uptake and accumulation by S. aureus through hexose phosphate transporters, which are not present in mammalian cell membranes. This approach leads to the specific uptake of the radiopharmaceutical into the bacteria and not the sites of sterile inflammation.

Methods

[18F]FDG-6-P was synthesised from [18F]FDG. Yield, purity and stability were confirmed by RP-HPLC and iTLC. The specificity of [18F]FDG-6-P for the bacterial universal hexose phosphate transporter (UHPT) was confirmed with S. aureus and mammalian cell assays in vitro. Whole body biodistribution and accumulation of [18F]FDG-6-P at the sites of bioluminescent staphylococcal infection were established in a murine foreign body infection model.

Results

In vitro validation assays demonstrated that [18F]FDG-6-P was stable and specifically transported into S. aureus but not mammalian cells. [18F]FDG-6-P was elevated at the sites of S. aureus infection in vivo compared to uninfected controls; however, the increase in signal was not significant and unexpectedly, the whole-body biodistribution of [18F]FDG-6-P was similar to that of [18F]FDG.

Conclusions

Despite conclusive in vitro validation, [18F]FDG-6-P did not behave as predicted in vivo. However at the site of known infection, [18F]FDG-6-P levels were elevated compared with uninfected controls, providing a higher signal-to-noise ratio. The bacterial UHPT can transport hexose phosphates other than glucose, and therefore alternative sugars may show differential biodistribution and provide a means for specific bacterial detection.
Literature
1.
go back to reference Dumarey N, Egrise D, Blocklet D, Stallenberg B, Remmelink M, del Marmol V, et al. Imaging infection with F-18-FDG-labeled leukocyte PET/CT: initial experience in 21 patients. J Nucl Med. 2006;47:625–32.PubMed Dumarey N, Egrise D, Blocklet D, Stallenberg B, Remmelink M, del Marmol V, et al. Imaging infection with F-18-FDG-labeled leukocyte PET/CT: initial experience in 21 patients. J Nucl Med. 2006;47:625–32.PubMed
2.
go back to reference Signore A, Glaudemans AW. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques. Ann Nucl Med. 2011;25:681–700. doi: 10.1007/s12149-011-0521-z.CrossRefPubMed Signore A, Glaudemans AW. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques. Ann Nucl Med. 2011;25:681–700. doi: 10.1007/s12149-011-0521-z.CrossRefPubMed
3.
go back to reference Palestro CJ, Love C, Bhargava KK. Labeled leukocyte imaging: current status and future directions. Q J Nucl Med Mol Imaging. 2009;53:105–23.PubMed Palestro CJ, Love C, Bhargava KK. Labeled leukocyte imaging: current status and future directions. Q J Nucl Med Mol Imaging. 2009;53:105–23.PubMed
4.
go back to reference Kumar V. Radiolabeled white blood cells and direct targeting of micro-organisms for infection imaging. Q J Nucl Med Mol Imaging. 2005;49:325–38.PubMed Kumar V. Radiolabeled white blood cells and direct targeting of micro-organisms for infection imaging. Q J Nucl Med Mol Imaging. 2005;49:325–38.PubMed
5.
go back to reference Basu S, Chryssikos T, Moghadam-Kia S, Zhuang H, Torigian DA, Alavi A. Positron emission tomography as a diagnostic tool in infection: present role and future possibilities. Semin Nucl Med. 2009;39:36–51. doi:10.1053/j.semnuclmed.2008.08.004.CrossRefPubMed Basu S, Chryssikos T, Moghadam-Kia S, Zhuang H, Torigian DA, Alavi A. Positron emission tomography as a diagnostic tool in infection: present role and future possibilities. Semin Nucl Med. 2009;39:36–51. doi:10.1053/j.semnuclmed.2008.08.004.CrossRefPubMed
6.
go back to reference Love C, Palestro CJ. Radionuclide imaging of infection. J Nucl Med Technol. 2004;32:47–57. quiz 8–9.PubMed Love C, Palestro CJ. Radionuclide imaging of infection. J Nucl Med Technol. 2004;32:47–57. quiz 8–9.PubMed
7.
go back to reference Becker W, Meller J. The role of nuclear medicine in infection and inflammation. Lancet Infect Dis. 2001;1:326–33. doi: 10.1016/S1473-3099(01)00146-3.CrossRefPubMed Becker W, Meller J. The role of nuclear medicine in infection and inflammation. Lancet Infect Dis. 2001;1:326–33. doi: 10.1016/S1473-3099(01)00146-3.CrossRefPubMed
8.
go back to reference Wang Z, Ning X. Clinical diagnosis of bacterial infection via FDG-PET imaging. 2013. Wang Z, Ning X. Clinical diagnosis of bacterial infection via FDG-PET imaging. 2013.
9.
go back to reference Zoccali C, Teori G, Salducca N. The role of FDG-PET in distinguishing between septic and aseptic loosening in hip prosthesis: a review of literature. Int Orthop. 2009;33:1–5. doi: 10.1007/s00264-008-0575-2.CrossRefPubMedCentralPubMed Zoccali C, Teori G, Salducca N. The role of FDG-PET in distinguishing between septic and aseptic loosening in hip prosthesis: a review of literature. Int Orthop. 2009;33:1–5. doi: 10.1007/s00264-008-0575-2.CrossRefPubMedCentralPubMed
10.
go back to reference Aksoy SY, Asa S, Ozhan M, Ocak M, Sager MS, Erkan ME, et al. FDG and FDG-labelled leucocyte PET/CT in the imaging of prosthetic joint infection. Eur J Nucl Med Mol Imaging. 2014;41:556–64. doi: 10.1007/s00259-013-2597-2.CrossRefPubMed Aksoy SY, Asa S, Ozhan M, Ocak M, Sager MS, Erkan ME, et al. FDG and FDG-labelled leucocyte PET/CT in the imaging of prosthetic joint infection. Eur J Nucl Med Mol Imaging. 2014;41:556–64. doi: 10.1007/s00259-013-2597-2.CrossRefPubMed
11.
go back to reference Stumpe KD, Dazzi H, Schaffner A, von Schulthess GK. Infection imaging using whole-body FDG-PET. Eur J Nucl Med. 2000;27:822–32.CrossRefPubMed Stumpe KD, Dazzi H, Schaffner A, von Schulthess GK. Infection imaging using whole-body FDG-PET. Eur J Nucl Med. 2000;27:822–32.CrossRefPubMed
12.
go back to reference Chacko TK, Zhuang H, Nakhoda KZ, Moussavian B, Alavi A. Applications of fluorodeoxyglucose positron emission tomography in the diagnosis of infection. Nucl Med Commun. 2003;24:615–24. doi: 10.1097/01.mnm.0000075189.60210.df.CrossRefPubMed Chacko TK, Zhuang H, Nakhoda KZ, Moussavian B, Alavi A. Applications of fluorodeoxyglucose positron emission tomography in the diagnosis of infection. Nucl Med Commun. 2003;24:615–24. doi: 10.1097/01.mnm.0000075189.60210.df.CrossRefPubMed
13.
go back to reference Rosenbaum SJ, Lind T, Antoch G, Bockisch A. False-positive FDG PET uptake–the role of PET/CT. Eur Radiol. 2006;16:1054–65. doi: 10.1007/s00330-005-0088-y.CrossRefPubMed Rosenbaum SJ, Lind T, Antoch G, Bockisch A. False-positive FDG PET uptake–the role of PET/CT. Eur Radiol. 2006;16:1054–65. doi: 10.1007/s00330-005-0088-y.CrossRefPubMed
14.
go back to reference Moberg L, Karawajczyk M, Venge P. 99mTc-HMPAO (Ceretec) is stored in and released from the granules of eosinophil granulocytes. Br J Haematol. 2001;114:185–90. doi: 10.1046/j.1365-2141.2001.02889.x.CrossRefPubMed Moberg L, Karawajczyk M, Venge P. 99mTc-HMPAO (Ceretec) is stored in and released from the granules of eosinophil granulocytes. Br J Haematol. 2001;114:185–90. doi: 10.1046/j.1365-2141.2001.02889.x.CrossRefPubMed
15.
go back to reference Lukawska JJ, Livieratos L, Sawyer BM, Lee T, O’Doherty M, Blower PJ, et al. Real-time differential tracking of human neutrophil and eosinophil migration in vivo. J Allergy Clin Immunol. 2014;133:233–9. e1. doi:10.1016/j.jaci.2013.06.031.CrossRefPubMed Lukawska JJ, Livieratos L, Sawyer BM, Lee T, O’Doherty M, Blower PJ, et al. Real-time differential tracking of human neutrophil and eosinophil migration in vivo. J Allergy Clin Immunol. 2014;133:233–9. e1. doi:10.1016/j.jaci.2013.06.031.CrossRefPubMed
16.
go back to reference Bunschoten A, Welling MM, Termaat MF, Sathekge M, van Leeuwen FW. Development and prospects of dedicated tracers for the molecular imaging of bacterial infections. Bioconjug Chem. 2013;24:1971–89. doi:10.1021/bc4003037.CrossRefPubMed Bunschoten A, Welling MM, Termaat MF, Sathekge M, van Leeuwen FW. Development and prospects of dedicated tracers for the molecular imaging of bacterial infections. Bioconjug Chem. 2013;24:1971–89. doi:10.1021/bc4003037.CrossRefPubMed
17.
go back to reference Sasser TA, Van Avermaete AE, White A, Chapman S, Johnson JR, Van Avermaete T, et al. Bacterial infection probes and imaging strategies in clinical nuclear medicine and preclinical molecular imaging. Curr Top Med Chem. 2013;13:479–87. doi: CTMC-EPUB-20130207-8.CrossRefPubMed Sasser TA, Van Avermaete AE, White A, Chapman S, Johnson JR, Van Avermaete T, et al. Bacterial infection probes and imaging strategies in clinical nuclear medicine and preclinical molecular imaging. Curr Top Med Chem. 2013;13:479–87. doi: CTMC-EPUB-20130207-8.CrossRefPubMed
18.
go back to reference Kluytmans J, van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev. 1997;10:505–20.PubMedCentralPubMed Kluytmans J, van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev. 1997;10:505–20.PubMedCentralPubMed
19.
go back to reference Dall’Antonia M, Coen PG, Wilks M, Whiley A, Millar M. Competition between methicillin-sensitive and -resistant Staphylococcus aureus in the anterior nares. J Hosp Infect. 2005;61:62–7. doi: 10.1016/j.jhin.2005.01.008.CrossRefPubMed Dall’Antonia M, Coen PG, Wilks M, Whiley A, Millar M. Competition between methicillin-sensitive and -resistant Staphylococcus aureus in the anterior nares. J Hosp Infect. 2005;61:62–7. doi: 10.1016/j.jhin.2005.01.008.CrossRefPubMed
20.
go back to reference ECDC. Antimicrobial resistance surveillance in Europe 2011. Eur Centre Dis Prev Control. 2012;1:55–7. ECDC. Antimicrobial resistance surveillance in Europe 2011. Eur Centre Dis Prev Control. 2012;1:55–7.
21.
go back to reference ECDC. Antimicrobial resistance surveillance in Europe 2012. Eur Centre Dis Prev Control. 2013;1:59–62. ECDC. Antimicrobial resistance surveillance in Europe 2012. Eur Centre Dis Prev Control. 2013;1:59–62.
22.
go back to reference Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339:520–32. doi: 10.1056/NEJM199808203390806.CrossRefPubMed Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339:520–32. doi: 10.1056/NEJM199808203390806.CrossRefPubMed
23.
go back to reference WHO. Antimicrobial resistance: global report on surveillance 2014. WHO. 2014;1:9–12. 19–21. WHO. Antimicrobial resistance: global report on surveillance 2014. WHO. 2014;1:9–12. 19–21.
24.
go back to reference Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. 2013;26:185–230. doi: 10.1128/cmr. 00059-12.CrossRefPubMedCentralPubMed Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. 2013;26:185–230. doi: 10.1128/cmr. 00059-12.CrossRefPubMedCentralPubMed
25.
go back to reference Gorak EJ, Yamada SM, Brown JD. Community-acquired methicillin-resistant Staphylococcus aureus in hospitalized adults and children without known risk factors. Clin Infect Dis. 1999;29:797–800. doi: 10.1086/520437.CrossRefPubMed Gorak EJ, Yamada SM, Brown JD. Community-acquired methicillin-resistant Staphylococcus aureus in hospitalized adults and children without known risk factors. Clin Infect Dis. 1999;29:797–800. doi: 10.1086/520437.CrossRefPubMed
26.
go back to reference Charlebois ED, Bangsberg DR, Moss NJ, Moore MR, Moss AR, Chambers HF, et al. Population-based community prevalence of methicillin-resistant Staphylococcus aureus in the urban poor of San Francisco. Clin Infect Dis. 2002;34:425–33. doi: 10.1086/338069.CrossRefPubMed Charlebois ED, Bangsberg DR, Moss NJ, Moore MR, Moss AR, Chambers HF, et al. Population-based community prevalence of methicillin-resistant Staphylococcus aureus in the urban poor of San Francisco. Clin Infect Dis. 2002;34:425–33. doi: 10.1086/338069.CrossRefPubMed
27.
go back to reference Carleton HA, Diep BA, Charlebois ED, Sensabaugh GF, Perdreau-Remington F. Community-adapted methicillin-resistant Staphylococcus aureus (MRSA): population dynamics of an expanding community reservoir of MRSA. J Infect Dis. 2004;190:1730–8. doi: 10.1086/425019.CrossRefPubMed Carleton HA, Diep BA, Charlebois ED, Sensabaugh GF, Perdreau-Remington F. Community-adapted methicillin-resistant Staphylococcus aureus (MRSA): population dynamics of an expanding community reservoir of MRSA. J Infect Dis. 2004;190:1730–8. doi: 10.1086/425019.CrossRefPubMed
28.
go back to reference Diederen BM, Kluytmans JA. The emergence of infections with community-associated methicillin resistant Staphylococcus aureus. J Infect. 2006;52:157–68. doi: 10.1016/j.jinf.2005.09.001.CrossRefPubMed Diederen BM, Kluytmans JA. The emergence of infections with community-associated methicillin resistant Staphylococcus aureus. J Infect. 2006;52:157–68. doi: 10.1016/j.jinf.2005.09.001.CrossRefPubMed
29.
go back to reference Kluytmans-Vandenbergh MF, Kluytmans JA. Community-acquired methicillin-resistant Staphylococcus aureus: current perspectives. Clin Microbiol Infect. 2006;12 Suppl 1:9–15. doi: 10.1111/j.1469-0691.2006.01341.x.CrossRefPubMed Kluytmans-Vandenbergh MF, Kluytmans JA. Community-acquired methicillin-resistant Staphylococcus aureus: current perspectives. Clin Microbiol Infect. 2006;12 Suppl 1:9–15. doi: 10.1111/j.1469-0691.2006.01341.x.CrossRefPubMed
30.
go back to reference Winkler HH. Distribution of an inducible hexose-phosphate transport-system among various bacteria. J Bacteriol. 1973;116:1079–81.PubMedCentralPubMed Winkler HH. Distribution of an inducible hexose-phosphate transport-system among various bacteria. J Bacteriol. 1973;116:1079–81.PubMedCentralPubMed
31.
go back to reference Kaarstad K, Bender D, Bentzen L, Munk OL, Keiding S. Metabolic fate of 18F-FDG in mice bearing either SCCVII squamous cell carcinoma or C3H mammary carcinoma. J Nucl Med. 2002;43:940–7.PubMed Kaarstad K, Bender D, Bentzen L, Munk OL, Keiding S. Metabolic fate of 18F-FDG in mice bearing either SCCVII squamous cell carcinoma or C3H mammary carcinoma. J Nucl Med. 2002;43:940–7.PubMed
32.
go back to reference Kuklin NA, Pancari GD, Tobery TW, Cope L, Jackson J, Gill C, et al. Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models. Antimicrob Agents Chemother. 2003;47:2740–8.CrossRefPubMedCentralPubMed Kuklin NA, Pancari GD, Tobery TW, Cope L, Jackson J, Gill C, et al. Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models. Antimicrob Agents Chemother. 2003;47:2740–8.CrossRefPubMedCentralPubMed
33.
go back to reference Hook AL, Chang CY, Yang J, Luckett J, Cockayne A, Atkinson S, et al. Combinatorial discovery of polymers resistant to bacterial attachment. Nat Biotechnol. 2012;30:868–75. doi: 10.1038/nbt.2316.CrossRefPubMedCentralPubMed Hook AL, Chang CY, Yang J, Luckett J, Cockayne A, Atkinson S, et al. Combinatorial discovery of polymers resistant to bacterial attachment. Nat Biotechnol. 2012;30:868–75. doi: 10.1038/nbt.2316.CrossRefPubMedCentralPubMed
34.
go back to reference Gowrishankar G, Namavari M, Jouannot EB, Hoehne A, Reeves R, Hardy J, et al. Investigation of 6-[18F]-fluoromaltose as a novel PET tracer for imaging bacterial infection. PLoS One. 2014;9:e107951. doi: 10.1371/journal.pone.0107951 PONE-D-14-25942.CrossRefPubMedCentralPubMed Gowrishankar G, Namavari M, Jouannot EB, Hoehne A, Reeves R, Hardy J, et al. Investigation of 6-[18F]-fluoromaltose as a novel PET tracer for imaging bacterial infection. PLoS One. 2014;9:e107951. doi: 10.1371/journal.pone.0107951 PONE-D-14-25942.CrossRefPubMedCentralPubMed
35.
go back to reference Weinstein EA, Ordonez AA, DeMarco VP, Murawski AM, Pokkali S, MacDonald EM, et al. Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography. Sci Transl Med. 2014;6:259ra146. doi: 10.1126/scitranslmed.3009815.CrossRefPubMed Weinstein EA, Ordonez AA, DeMarco VP, Murawski AM, Pokkali S, MacDonald EM, et al. Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography. Sci Transl Med. 2014;6:259ra146. doi: 10.1126/scitranslmed.3009815.CrossRefPubMed
36.
go back to reference Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2011;2:445–59. doi: 10.4161/viru.2.5.17724.CrossRefPubMedCentralPubMed Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2011;2:445–59. doi: 10.4161/viru.2.5.17724.CrossRefPubMedCentralPubMed
38.
go back to reference Etzioni DA, Liu JH, Maggard MA, Ko CY. The aging population and its impact on the surgery workforce. Ann Surg. 2003;238:170–7. doi:10.1097/01.SLA.0000081085.98792.3d 00000658-200308000-00003.PubMedCentralPubMed Etzioni DA, Liu JH, Maggard MA, Ko CY. The aging population and its impact on the surgery workforce. Ann Surg. 2003;238:170–7. doi:10.1097/01.SLA.0000081085.98792.3d 00000658-200308000-00003.PubMedCentralPubMed
39.
go back to reference Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol. 2011;186:6585–96. doi: jimmunol.1002794.CrossRefPubMedCentralPubMed Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol. 2011;186:6585–96. doi: jimmunol.1002794.CrossRefPubMedCentralPubMed
40.
go back to reference Kadurugamuwa JL, Sin LV, Yu J, Francis KP, Purchio TF, Contag PR. Noninvasive optical imaging method to evaluate postantibiotic effects on biofilm infection in vivo. Antimicrob Agents Chemother. 2004;48:2283–7. doi: 10.1128/AAC.48.6.2283-2287.2004 48/6/2283.CrossRefPubMedCentralPubMed Kadurugamuwa JL, Sin LV, Yu J, Francis KP, Purchio TF, Contag PR. Noninvasive optical imaging method to evaluate postantibiotic effects on biofilm infection in vivo. Antimicrob Agents Chemother. 2004;48:2283–7. doi: 10.1128/AAC.48.6.2283-2287.2004 48/6/2283.CrossRefPubMedCentralPubMed
41.
go back to reference Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, et al. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med. 2006;47:999–1006. doi: 47/6/999.PubMed Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, et al. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med. 2006;47:999–1006. doi: 47/6/999.PubMed
42.
go back to reference Kim C, Kim IH, Kim SI, Kim YS, Kang SH, Moon SH, et al. Comparison of the Intraperitoneal, retroorbital and per oral routes for F-18 FDG administration as effective alternatives to intravenous administration in mouse tumor models using small animal PET/CT studies. Nucl Med Mol Imaging. 2011;45:169–76. doi:10.1007/s13139-011-0087-7 87.CrossRefPubMedCentralPubMed Kim C, Kim IH, Kim SI, Kim YS, Kang SH, Moon SH, et al. Comparison of the Intraperitoneal, retroorbital and per oral routes for F-18 FDG administration as effective alternatives to intravenous administration in mouse tumor models using small animal PET/CT studies. Nucl Med Mol Imaging. 2011;45:169–76. doi:10.1007/s13139-011-0087-7 87.CrossRefPubMedCentralPubMed
43.
go back to reference Watanabe M, Goto H, Matsushima M, Shimono R, Kihara T. Distribution of glucose-6-phosphatase activity in mice studied by in vitro whole-body autoradiography. J Histochem Cytochem. 1983;31:1426–9.CrossRefPubMed Watanabe M, Goto H, Matsushima M, Shimono R, Kihara T. Distribution of glucose-6-phosphatase activity in mice studied by in vitro whole-body autoradiography. J Histochem Cytochem. 1983;31:1426–9.CrossRefPubMed
44.
go back to reference Burns RL, Rosenberger PG, Klebe RJ. Carbohydrate preferences of mammalian cells. J Cell Physiol. 1976;88:307–16. doi:10.1002/jcp.1040880306.CrossRefPubMed Burns RL, Rosenberger PG, Klebe RJ. Carbohydrate preferences of mammalian cells. J Cell Physiol. 1976;88:307–16. doi:10.1002/jcp.1040880306.CrossRefPubMed
45.
go back to reference Jamar F, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54:647–58. doi: 10.2967/jnumed.112.112524.CrossRefPubMed Jamar F, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54:647–58. doi: 10.2967/jnumed.112.112524.CrossRefPubMed
Metadata
Title
[18F]FDG-6-P as a novel in vivo tool for imaging staphylococcal infections
Authors
Bethany Mills
Ramla O Awais
Jeni Luckett
Dave Turton
Paul Williams
Alan C Perkins
Philip J Hill
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2015
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-015-0095-1

Other articles of this Issue 1/2015

EJNMMI Research 1/2015 Go to the issue