Skip to main content
Top
Published in: EJNMMI Research 1/2015

Open Access 01-12-2015 | Original research

The ultimate radiochemical nightmare: upon radio-iodination of Botulinum neurotoxin A, the introduced iodine atom itself seems to be fatal for the bioactivity of this macromolecule

Authors: Janneke IM van Uhm, Gerard WM Visser, Marcel J van der Schans, Albert A Geldof, Eric JH Meuleman, Jakko A Nieuwenhuijzen

Published in: EJNMMI Research | Issue 1/2015

Login to get access

Abstract

Background

Botulinum neurotoxin A (BoNT-A) is a highly neurotoxic drug and frequently used in patients. Knowledge on the optimal way of administration of BoNT-A and its subsequent distribution is still rather limited. An accurate method for monitoring these processes might be the use of radiolabelled BoNT-A. In this paper, we report our feasibility study on labelling BoNT-A with high-dose iodine-125 (125I) via IODOGEN-coated BoNT-A method.

Methods

Using cetuximab as model substrate for BoNT-A, a miniaturization of the IODOGEN-coated mAb method was developed with special attention to the minimum required amount of the oxidant IODOGEN, while the amount of substrate, reaction volume and reaction time were downsized. Labelling efficiency and radiochemical purity were determined by TLC, integrity by SDS-PAGE and HPLC and immunoreactivity by cell-binding assay. BoNT-A (50 μg) was labelled with 125I by coating with 2.5 μg IODOGEN, in a total reaction volume of 250 μL and a reaction time of 90 s. 125I-BoNT-A was purified by size exclusion chromatography (PD10 column) using ascorbic acid solution (5 mg/ml, pH = 5) as eluent. Quality analysis of 125I-BoNT-A was performed by an in vitro bladder strip model, an electrochemiluminescence assay and an Endopep assay.

Results

Cetuximab (50 μg) labelling with 125I (15 to 150 MBq) resulted in a labelling efficiency of 70% to 80%, a radiochemical purity of >99%, an immunoreactivity of >95% and a retained integrity on SDS; HPLC analysis revealed partly affected integrity when 110 to 150 MBq 125I was used, i.e. when the averaged I/mAb molar ratio exceeded 3. Addition of HEPES (20 mM) and lactose (1.25%) (lyophilized BoNT-A contains HEPES and lactose) decreased the labelling efficiency to 44% to 54%. BoNT-A (50 μg) labelling with 125I (97.2 to 98.3 MBq) resulted in labelling efficiency of 51% to 52% with a radiochemical purity >98.5%, a specific activity of 150.5 to 152.9 MBq/nmol and an I/BoNT-A molar ratio of 1.86 to 1.90. The in vitro bladder strip model showed no bioactivity of 125I-BoNT-A when compared to unlabelled BoNT-A. The electrochemiluminescence and Endopep assay demonstrated around 10% and 15% bioactivity of 125I-BoNT-A compared to unlabelled BoNT-A, respectively. The remaining bioactivity correlates within the Poisson distribution with the amount of BoNT-A molecules that does not bear an iodine atom.

Conclusions

BoNT-A was successfully radio-iodinated with an activity high enough to enable in vivo measurement of nanograms of BoNT-A, which could be used in studying optimization of administration techniques of BoNT-A. The bioactivity of a BoNT-A molecule is, however, lost upon the introduction of an iodine atom into the tyrosine moiety of this sensitive molecule.
Literature
1.
go back to reference Schurch B, Stohrer M, Kramer G, Schmid DM, Gaul G, Hauri D. Botulinum-A toxin for treating detrusor hyperreflexia in spinal cord injured patients: a new alternative to anticholinergic drugs? Preliminary results. J Urol. 2000;164:692–7.CrossRefPubMed Schurch B, Stohrer M, Kramer G, Schmid DM, Gaul G, Hauri D. Botulinum-A toxin for treating detrusor hyperreflexia in spinal cord injured patients: a new alternative to anticholinergic drugs? Preliminary results. J Urol. 2000;164:692–7.CrossRefPubMed
2.
go back to reference Duthie JB, Vincent M, Herbison GP, Wilson DI, Wilson D. Botulinum toxin injections for adults with overactive bladder syndrome. Cochrane Database Syst Rev. 2011;12:CD005493.PubMed Duthie JB, Vincent M, Herbison GP, Wilson DI, Wilson D. Botulinum toxin injections for adults with overactive bladder syndrome. Cochrane Database Syst Rev. 2011;12:CD005493.PubMed
3.
go back to reference Mangera A, Apostolidis A, Andersson KE, Dasgupta P, Giannantoni A, Roehrborn C, et al. An updated systematic review and statistical comparison of standardised mean outcomes for the use of botulinum toxin in the management of lower urinary tract disorders. Eur Urol. 2014;65:981–90.CrossRefPubMed Mangera A, Apostolidis A, Andersson KE, Dasgupta P, Giannantoni A, Roehrborn C, et al. An updated systematic review and statistical comparison of standardised mean outcomes for the use of botulinum toxin in the management of lower urinary tract disorders. Eur Urol. 2014;65:981–90.CrossRefPubMed
4.
go back to reference Apostolidis A, Dasgupta P, Fowler CJ. Proposed mechanism for the efficacy of injected botulinum toxin in the treatment of human detrusor overactivity. Eur Urol. 2006;49:644–50.CrossRefPubMed Apostolidis A, Dasgupta P, Fowler CJ. Proposed mechanism for the efficacy of injected botulinum toxin in the treatment of human detrusor overactivity. Eur Urol. 2006;49:644–50.CrossRefPubMed
5.
go back to reference Coelho A, Cruz F, Cruz CD, Avelino A. Spread of onabotulinumtoxinA after bladder injection. Experimental study using the distribution of cleaved SNAP-25 as the marker of the toxin action. Eur Urol. 2012;61:1178–1184.6.CrossRefPubMed Coelho A, Cruz F, Cruz CD, Avelino A. Spread of onabotulinumtoxinA after bladder injection. Experimental study using the distribution of cleaved SNAP-25 as the marker of the toxin action. Eur Urol. 2012;61:1178–1184.6.CrossRefPubMed
7.
go back to reference Ravichandran E, Gong Y, Al Saleem FH, Ancharski DM, Joshi SG, Simpson LL. An initial assessment of the systemic pharmacokinetics of botulinum toxin. J Pharmacol Exp Ther. 2006;318:1343–51.CrossRefPubMed Ravichandran E, Gong Y, Al Saleem FH, Ancharski DM, Joshi SG, Simpson LL. An initial assessment of the systemic pharmacokinetics of botulinum toxin. J Pharmacol Exp Ther. 2006;318:1343–51.CrossRefPubMed
8.
go back to reference Williams RS, Tse CK, Dolly JO, Hambleton P, Melling J. Radioiodination of botulinum neurotoxin type A with retention of biological activity and its binding to brain synaptosomes. Eur J Biochem. 1983;131:437–45.CrossRefPubMed Williams RS, Tse CK, Dolly JO, Hambleton P, Melling J. Radioiodination of botulinum neurotoxin type A with retention of biological activity and its binding to brain synaptosomes. Eur J Biochem. 1983;131:437–45.CrossRefPubMed
9.
go back to reference Visser GW, Klok RP, Gebbinck JW, Ter LT, van Dongen GA, Molthoff CF. Optimal quality (131)I-monoclonal antibodies on high-dose labeling in a large reaction volume and temporarily coating the antibody with IODO-GEN. J Nucl Med. 2001;42:509–19.PubMed Visser GW, Klok RP, Gebbinck JW, Ter LT, van Dongen GA, Molthoff CF. Optimal quality (131)I-monoclonal antibodies on high-dose labeling in a large reaction volume and temporarily coating the antibody with IODO-GEN. J Nucl Med. 2001;42:509–19.PubMed
10.
go back to reference Tran L, Baars JW, Maessen HJ, Hoefnagel CA, Beijnen JH, Huitema AD. A simple and safe method for 131I radiolabeling of rituximab for myeloablative high-dose radioimmunotherapy. Cancer Biother Radiopharm. 2009;24:103–10.CrossRefPubMed Tran L, Baars JW, Maessen HJ, Hoefnagel CA, Beijnen JH, Huitema AD. A simple and safe method for 131I radiolabeling of rituximab for myeloablative high-dose radioimmunotherapy. Cancer Biother Radiopharm. 2009;24:103–10.CrossRefPubMed
11.
go back to reference Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn Jr PA. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods. 1984;72:77–89.CrossRefPubMed Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn Jr PA. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods. 1984;72:77–89.CrossRefPubMed
12.
go back to reference Van Uhm JIM, Beckers GM, van der Laarse WJ, Meuleman EJ, Geldof AA, Nieuwenhuijzen JA. Development of an in vitro model to measure bioactivity of botulinum neurotoxin A in rat bladder muscle strips. BMC Urol. 2014;14:37.PubMedCentralCrossRefPubMed Van Uhm JIM, Beckers GM, van der Laarse WJ, Meuleman EJ, Geldof AA, Nieuwenhuijzen JA. Development of an in vitro model to measure bioactivity of botulinum neurotoxin A in rat bladder muscle strips. BMC Urol. 2014;14:37.PubMedCentralCrossRefPubMed
13.
go back to reference Rivera VR, Gamez FJ, Keener WK, White JA, Poli MA. Rapid detection of Clostridium botulinum toxins A, B, E, and F in clinical samples, selected food matrices, and buffer using paramagnetic bead-based electrochemiluminescence detection. Anal Biochem. 2006;353:248–56.CrossRefPubMed Rivera VR, Gamez FJ, Keener WK, White JA, Poli MA. Rapid detection of Clostridium botulinum toxins A, B, E, and F in clinical samples, selected food matrices, and buffer using paramagnetic bead-based electrochemiluminescence detection. Anal Biochem. 2006;353:248–56.CrossRefPubMed
14.
go back to reference Kalb SR, Moura H, Boyer AE, McWilliams LG, Pirkle JL, Barr JR. The use of Endopep-MS for the detection of botulinum toxins A, B, E, and F in serum and stool samples. Anal Biochem. 2006;351:84–92.CrossRefPubMed Kalb SR, Moura H, Boyer AE, McWilliams LG, Pirkle JL, Barr JR. The use of Endopep-MS for the detection of botulinum toxins A, B, E, and F in serum and stool samples. Anal Biochem. 2006;351:84–92.CrossRefPubMed
15.
go back to reference Perk LR, Vosjan MWD, Visser GWM, Budde M, Jurek P, Kiefer GE, et al. p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging. EJNMMI. 2010;37:250–9. Perk LR, Vosjan MWD, Visser GWM, Budde M, Jurek P, Kiefer GE, et al. p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging. EJNMMI. 2010;37:250–9.
16.
go back to reference Tijink BM, Perk LR, Budde M, Stigter-van Walsum M, Visser GWM, Kloet RW, et al. 124I-L19-SIP for immuno-PET imaging of tumor vasculature and guidance of 131I-L19-SIP radioimmunotherapy. EJNMMI. 2009;36:1235–44. Tijink BM, Perk LR, Budde M, Stigter-van Walsum M, Visser GWM, Kloet RW, et al. 124I-L19-SIP for immuno-PET imaging of tumor vasculature and guidance of 131I-L19-SIP radioimmunotherapy. EJNMMI. 2009;36:1235–44.
17.
go back to reference Dolly JO, Aoki KR. The structure and mode of action of different botulinum toxins. Eur J Neurol. 2006;13 Suppl 4:1–9.CrossRefPubMed Dolly JO, Aoki KR. The structure and mode of action of different botulinum toxins. Eur J Neurol. 2006;13 Suppl 4:1–9.CrossRefPubMed
18.
go back to reference Van Gog FB, Visser GW, Stroomer JW, Roos JC, Snow GB, van Dongen GA. High dose rhenium-186-labeling of monoclonal antibodies for clinical application: pitfalls and solutions. Cancer. 1997;80(12 Suppl):2360–70.CrossRefPubMed Van Gog FB, Visser GW, Stroomer JW, Roos JC, Snow GB, van Dongen GA. High dose rhenium-186-labeling of monoclonal antibodies for clinical application: pitfalls and solutions. Cancer. 1997;80(12 Suppl):2360–70.CrossRefPubMed
19.
go back to reference Cohen R, Stammes MA, De Roos IHC, Stigter-Van Walsum M, Visser GWM, Van Dongen GAMS. Inert coupling of IRDye800CW to monoclonal antibodies for clinical optical imaging of tumor targets. EJNMMI Res. 2011;1:31.PubMedCentralCrossRefPubMed Cohen R, Stammes MA, De Roos IHC, Stigter-Van Walsum M, Visser GWM, Van Dongen GAMS. Inert coupling of IRDye800CW to monoclonal antibodies for clinical optical imaging of tumor targets. EJNMMI Res. 2011;1:31.PubMedCentralCrossRefPubMed
Metadata
Title
The ultimate radiochemical nightmare: upon radio-iodination of Botulinum neurotoxin A, the introduced iodine atom itself seems to be fatal for the bioactivity of this macromolecule
Authors
Janneke IM van Uhm
Gerard WM Visser
Marcel J van der Schans
Albert A Geldof
Eric JH Meuleman
Jakko A Nieuwenhuijzen
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2015
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-015-0083-5

Other articles of this Issue 1/2015

EJNMMI Research 1/2015 Go to the issue