Skip to main content
Top
Published in: EJNMMI Research 1/2015

Open Access 01-12-2015 | Original research

Transcriptional response in normal mouse tissues after i.v. 211At administration - response related to absorbed dose, dose rate, and time

Authors: Britta Langen, Nils Rudqvist, Toshima Z Parris, Emil Schüler, Johan Spetz, Khalil Helou, Eva Forssell-Aronsson

Published in: EJNMMI Research | Issue 1/2015

Login to get access

Abstract

Background

In cancer radiotherapy, knowledge of normal tissue responses and toxicity risks is essential in order to deliver the highest possible absorbed dose to the tumor while maintaining normal tissue exposure at non-critical levels. However, few studies have investigated normal tissue responses in vivo after 211At administration. In order to identify molecular biomarkers of ionizing radiation exposure, we investigated genome-wide transcriptional responses to (very) low mean absorbed doses from 211At in normal mouse tissues.

Methods

Female BALB/c nude mice were intravenously injected with 1.7 kBq 211At and killed after 1 h, 6 h, or 7 days or injected with 105 or 7.5 kBq and killed after 1 and 6 h, respectively. Controls were mock-treated. Total RNA was extracted from tissue samples of kidney cortex and medulla, liver, lungs, and spleen and subjected to microarray analysis. Enriched biological processes were categorized after cellular function based on Gene Ontology terms.

Results

Responses were tissue-specific with regard to the number of significantly regulated transcripts and associated cellular function. Dose rate effects on transcript regulation were observed with both direct and inverse trends. In several tissues, Angptl4, Per1 and Per2, and Tsc22d3 showed consistent transcript regulation at all exposure conditions.

Conclusions

This study demonstrated tissue-specific transcriptional responses and distinct dose rate effects after 211At administration. Transcript regulation of individual genes, as well as cellular responses inferred from enriched transcript data, may serve as biomarkers in vivo. These findings expand the knowledge base on normal tissue responses and may help to evaluate and limit side effects of radionuclide therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zalutsky MR, Bigner DD. Radioimmunotherapy with α-particle emitting radioimmunoconjugates. Acta Oncol. 1996;35:373–9.PubMedCrossRef Zalutsky MR, Bigner DD. Radioimmunotherapy with α-particle emitting radioimmunoconjugates. Acta Oncol. 1996;35:373–9.PubMedCrossRef
2.
go back to reference Corson DE, MacKenzie KR, Segrè E. Artificially radioactive element 85. Phys Rev. 1940;58:672–8.CrossRef Corson DE, MacKenzie KR, Segrè E. Artificially radioactive element 85. Phys Rev. 1940;58:672–8.CrossRef
3.
go back to reference Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 6th ed. Philadelphia: Lippincott Williams & Williams; 2006. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 6th ed. Philadelphia: Lippincott Williams & Williams; 2006.
4.
go back to reference Harrison A. The application of 211At in experimental tumor therapy. Radiochem Acta. 1989;47:157–61. Harrison A. The application of 211At in experimental tumor therapy. Radiochem Acta. 1989;47:157–61.
5.
go back to reference Larsen RH, Akabani G, Welsh P, Zalutsky MR. The cytotoxicity and microdosimetry of astatine-211-labeled chimeric monoclonal antibodies in human glioma and melanoma cells in vitro. Radiat Res. 1998;149:155–62.PubMedCrossRef Larsen RH, Akabani G, Welsh P, Zalutsky MR. The cytotoxicity and microdosimetry of astatine-211-labeled chimeric monoclonal antibodies in human glioma and melanoma cells in vitro. Radiat Res. 1998;149:155–62.PubMedCrossRef
6.
go back to reference Andersson H, Cederkrantz E, Bäck T, Divgi C, Elgqvist J, Himmelman J, et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211At-MX35 F(ab9)2–a phase I study. J Nucl Med. 2009;50:1153–60.PubMedCrossRef Andersson H, Cederkrantz E, Bäck T, Divgi C, Elgqvist J, Himmelman J, et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211At-MX35 F(ab9)2–a phase I study. J Nucl Med. 2009;50:1153–60.PubMedCrossRef
7.
go back to reference Andersson H, Lindegren S, Back T, Jacobsson L, Leser G, Horvath G. The curative and palliative potential of the monoclonal antibody MOv18 labelled with 211At in nude mice with intraperitoneally growing ovarian cancer xenografts – a long-term study. Acta Oncol. 2000;39:741–5.PubMedCrossRef Andersson H, Lindegren S, Back T, Jacobsson L, Leser G, Horvath G. The curative and palliative potential of the monoclonal antibody MOv18 labelled with 211At in nude mice with intraperitoneally growing ovarian cancer xenografts – a long-term study. Acta Oncol. 2000;39:741–5.PubMedCrossRef
8.
go back to reference Garg PK, Harrison CL, Zalutsky MR. Comparative tissue distribution in mice of the alpha-emitter 211At and 131I as labels of a monoclonal antibody and F(ab')2 fragment. Cancer Res. 1990;50:3514–20.PubMed Garg PK, Harrison CL, Zalutsky MR. Comparative tissue distribution in mice of the alpha-emitter 211At and 131I as labels of a monoclonal antibody and F(ab')2 fragment. Cancer Res. 1990;50:3514–20.PubMed
9.
go back to reference Lundh C, Lindencrona U, Schmitt A, Nilsson M, Forssell-Aronsson E. Biodistribution of free 211At and 125I in nude mice bearing tumors derived from anaplastic thyroid carcinoma cell lines. Cancer Biother Radiopharm. 2006;21:591–600.PubMedCrossRef Lundh C, Lindencrona U, Schmitt A, Nilsson M, Forssell-Aronsson E. Biodistribution of free 211At and 125I in nude mice bearing tumors derived from anaplastic thyroid carcinoma cell lines. Cancer Biother Radiopharm. 2006;21:591–600.PubMedCrossRef
10.
go back to reference Spetz J, Rudqvist N, Forssell-Aronsson E. Biodistribution and dosimetry of free 211At, 125I- and 131I- in rats. Cancer Biother Radiopharm. 2013;28(9):657–64.PubMedCentralPubMedCrossRef Spetz J, Rudqvist N, Forssell-Aronsson E. Biodistribution and dosimetry of free 211At, 125I- and 131I- in rats. Cancer Biother Radiopharm. 2013;28(9):657–64.PubMedCentralPubMedCrossRef
11.
go back to reference Hamilton JG, Durbin PW, Parrott M. The accumulation and destructive action of astatine 211 (eka-iodine) in the thyroid gland of rats and monkeys. J Clin Endocrinol Metab. 1954;14:1161–78.PubMedCrossRef Hamilton JG, Durbin PW, Parrott M. The accumulation and destructive action of astatine 211 (eka-iodine) in the thyroid gland of rats and monkeys. J Clin Endocrinol Metab. 1954;14:1161–78.PubMedCrossRef
12.
go back to reference Hamilton JG, Durbin PW, Parrott MW. Accumulation of astatine211 by thyroid gland in man. Proc Soc Exp Biol Med. 1954;86:366–9.PubMedCrossRef Hamilton JG, Durbin PW, Parrott MW. Accumulation of astatine211 by thyroid gland in man. Proc Soc Exp Biol Med. 1954;86:366–9.PubMedCrossRef
13.
go back to reference Brown I. Astatine-211: its possible applications in cancer therapy. Int J Rad Appl Instrum [A]. 1986;37:789–98.CrossRef Brown I. Astatine-211: its possible applications in cancer therapy. Int J Rad Appl Instrum [A]. 1986;37:789–98.CrossRef
14.
go back to reference Lindencrona U, Nilsson M, Forssell-Aronsson E. Similarities and differences between free 211At and 125I- transport in porcine thyroid epithelial cells cultured in bicameral chambers. Nucl Med Biol. 2001;28:41–50.PubMedCrossRef Lindencrona U, Nilsson M, Forssell-Aronsson E. Similarities and differences between free 211At and 125I- transport in porcine thyroid epithelial cells cultured in bicameral chambers. Nucl Med Biol. 2001;28:41–50.PubMedCrossRef
15.
go back to reference Lundh C, Lindencrona U, Postgård P, Carlsson T, Nilsson M, Forssell-Aronsson E. Radiation-induced thyroid stunning: differential effects of 123I, 131I, 99mTc, and 211At on iodide transport and NIS mRNA expression in cultured thyroid cells. J Nucl Med. 2009;50:1161–7.PubMedCrossRef Lundh C, Lindencrona U, Postgård P, Carlsson T, Nilsson M, Forssell-Aronsson E. Radiation-induced thyroid stunning: differential effects of 123I, 131I, 99mTc, and 211At on iodide transport and NIS mRNA expression in cultured thyroid cells. J Nucl Med. 2009;50:1161–7.PubMedCrossRef
16.
go back to reference Snyder AR, Morgan WF. Gene expression profiling after irradiation: clues to understanding acute and persistent responses? Cancer Metastasis Rev. 2004;23:259–68.PubMedCrossRef Snyder AR, Morgan WF. Gene expression profiling after irradiation: clues to understanding acute and persistent responses? Cancer Metastasis Rev. 2004;23:259–68.PubMedCrossRef
18.
go back to reference Pernot E, Hall J, Baatout S, Benotmane MA, Blanchardon E, Bouffler S, et al. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat Res. 2012;751(2):258–86.PubMedCrossRef Pernot E, Hall J, Baatout S, Benotmane MA, Blanchardon E, Bouffler S, et al. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat Res. 2012;751(2):258–86.PubMedCrossRef
19.
go back to reference Rudqvist N, Parris TZ, Schüler E, Helou K, Forssell-Aronsson E. Transcriptional response of BALB/c mouse thyroids following in vivo astatine-211 exposure reveals distinct gene expression profiles. EJNMMI Res. 2012;2:32.PubMedCentralPubMedCrossRef Rudqvist N, Parris TZ, Schüler E, Helou K, Forssell-Aronsson E. Transcriptional response of BALB/c mouse thyroids following in vivo astatine-211 exposure reveals distinct gene expression profiles. EJNMMI Res. 2012;2:32.PubMedCentralPubMedCrossRef
20.
go back to reference Langen B, Rudqvist N, Parris TZ, Schüler E, Helou K, Forssell-Aronsson E. Comparative analysis of transcriptional gene regulation indicates similar physiologic response in mouse tissues at low absorbed doses from intravenously administered 211At. J Nucl Med. 2013;54:990–8.PubMedCrossRef Langen B, Rudqvist N, Parris TZ, Schüler E, Helou K, Forssell-Aronsson E. Comparative analysis of transcriptional gene regulation indicates similar physiologic response in mouse tissues at low absorbed doses from intravenously administered 211At. J Nucl Med. 2013;54:990–8.PubMedCrossRef
21.
go back to reference Schüler E, Parris TZ, Rudqvist N, Helou K, Forssell-Aronsson E. Effects of internal low-dose irradiation from 131I on gene expression in normal tissues in Balb/c mice. EJNMMI Res. 2011;1:29.PubMedCentralPubMedCrossRef Schüler E, Parris TZ, Rudqvist N, Helou K, Forssell-Aronsson E. Effects of internal low-dose irradiation from 131I on gene expression in normal tissues in Balb/c mice. EJNMMI Res. 2011;1:29.PubMedCentralPubMedCrossRef
22.
go back to reference Rudqvist N, Schüler E, Parris TZ, Langen B, Helou K, Forssell-Aronsson E. Dose-specific transcriptional responses in thyroid tissue in mice after 131I administration. [In press]. Rudqvist N, Schüler E, Parris TZ, Langen B, Helou K, Forssell-Aronsson E. Dose-specific transcriptional responses in thyroid tissue in mice after 131I administration. [In press].
23.
go back to reference Lindegren S, Bäck T, Jensen HJ. Dry-distillation of astatine-211 from irradiated bismuth targets: a time-saving procedure with high recovery yields. Appl Radiat Isot. 2001;55:157–60.PubMedCrossRef Lindegren S, Bäck T, Jensen HJ. Dry-distillation of astatine-211 from irradiated bismuth targets: a time-saving procedure with high recovery yields. Appl Radiat Isot. 2001;55:157–60.PubMedCrossRef
24.
go back to reference Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry–standardization of nomenclature. J Nucl Med. 2009;50:477–84.PubMedCrossRef Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry–standardization of nomenclature. J Nucl Med. 2009;50:477–84.PubMedCrossRef
25.
go back to reference International Commission on Radiation Units and Measurements. ICRU Report 49: stopping powers and ranges for protons and alpha particles. Bethesda, MD: International Commission on Radiation Units and Measurements; 1993. International Commission on Radiation Units and Measurements. ICRU Report 49: stopping powers and ranges for protons and alpha particles. Bethesda, MD: International Commission on Radiation Units and Measurements; 1993.
26.
go back to reference Parris TZ, Danielsson A, Nemes S, Kovács A, Delle U, Fallenius G, et al. Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma. Clin Cancer Res. 2010;16:3860–74.PubMedCrossRef Parris TZ, Danielsson A, Nemes S, Kovács A, Delle U, Fallenius G, et al. Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma. Clin Cancer Res. 2010;16:3860–74.PubMedCrossRef
27.
go back to reference Benjamini YHY. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57:289–300. Benjamini YHY. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57:289–300.
28.
go back to reference Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Gene Ontol Consortium Nat Genet. 2000;25:25–9. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Gene Ontol Consortium Nat Genet. 2000;25:25–9.
30.
go back to reference Prise KM, Folkard M, Michael BD. A review of the bystander effect and its implications for low-dose exposure. Radiat Prot Dosimetry. 2003;104:347–55. Review.PubMedCrossRef Prise KM, Folkard M, Michael BD. A review of the bystander effect and its implications for low-dose exposure. Radiat Prot Dosimetry. 2003;104:347–55. Review.PubMedCrossRef
31.
go back to reference Heinonen M, Guipaud O, Milliat F, Buard V, Micheau B, Tarlet G, et al. Detecting time periods of differential gene expression using Gaussian processes: an application to endothelial cells exposed to radiotherapy dose fraction. Bioinformatics. 2014 Oct 28. [Epub ahead of print] doi:10.1093/bioinformatics/btu699. Heinonen M, Guipaud O, Milliat F, Buard V, Micheau B, Tarlet G, et al. Detecting time periods of differential gene expression using Gaussian processes: an application to endothelial cells exposed to radiotherapy dose fraction. Bioinformatics. 2014 Oct 28. [Epub ahead of print] doi:10.​1093/​bioinformatics/​btu699.
32.
go back to reference Amundson SA, Chen DJ. Inverse dose-rate effect for mutation induction by gamma-rays in human lymphoblasts. Int J Radiat Biol. 1996;69(5):555–63.PubMedCrossRef Amundson SA, Chen DJ. Inverse dose-rate effect for mutation induction by gamma-rays in human lymphoblasts. Int J Radiat Biol. 1996;69(5):555–63.PubMedCrossRef
33.
go back to reference Colussi N, Lohman PH. Low dose-rate X-irradiation induces larger deletions at the human HPRT locus than high dose-rate X-irradiation. Int J Radiat Biol. 1997;72(5):531–6.PubMedCrossRef Colussi N, Lohman PH. Low dose-rate X-irradiation induces larger deletions at the human HPRT locus than high dose-rate X-irradiation. Int J Radiat Biol. 1997;72(5):531–6.PubMedCrossRef
34.
go back to reference Wideł M, Przybyszewski WM. Inverse dose-rate effect for the induction of micronuclei in Lewis lung carcinoma after exposure to cobalt-60 gamma rays. Radiat Res. 1998;149(1):98–102.PubMedCrossRef Wideł M, Przybyszewski WM. Inverse dose-rate effect for the induction of micronuclei in Lewis lung carcinoma after exposure to cobalt-60 gamma rays. Radiat Res. 1998;149(1):98–102.PubMedCrossRef
35.
go back to reference Ross HJ, Canada AL, Antoniono RJ, Redpath JL. High and low dose rate irradiation have opposing effects on cytokine gene expression in human glioblastoma cell lines. Eur J Cancer. 1997;33(1):144–52.PubMedCrossRef Ross HJ, Canada AL, Antoniono RJ, Redpath JL. High and low dose rate irradiation have opposing effects on cytokine gene expression in human glioblastoma cell lines. Eur J Cancer. 1997;33(1):144–52.PubMedCrossRef
36.
go back to reference Rossi HH, Kellerer AM. The dose rate dependence of oncogenic transformation by neutrons may be due to variation of response during the cell cycle. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;50(2):353–61.PubMedCrossRef Rossi HH, Kellerer AM. The dose rate dependence of oncogenic transformation by neutrons may be due to variation of response during the cell cycle. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;50(2):353–61.PubMedCrossRef
37.
go back to reference Brenner DJ, Hall EJ. The inverse dose-rate effect for oncogenic transformation by neutrons and charged particles: a plausible interpretation consistent with published data. Int J Radiat Biol. 1990;58(5):745–58.PubMedCrossRef Brenner DJ, Hall EJ. The inverse dose-rate effect for oncogenic transformation by neutrons and charged particles: a plausible interpretation consistent with published data. Int J Radiat Biol. 1990;58(5):745–58.PubMedCrossRef
38.
go back to reference Brenner DJ, Hahnfeldt P, Amundson SA, Sachs RK. Interpretation of inverse dose-rate effects for mutagenesis by sparsely ionizing radiation. Int J Radiat Biol. 1996;70(4):447–58.PubMedCrossRef Brenner DJ, Hahnfeldt P, Amundson SA, Sachs RK. Interpretation of inverse dose-rate effects for mutagenesis by sparsely ionizing radiation. Int J Radiat Biol. 1996;70(4):447–58.PubMedCrossRef
39.
go back to reference Okayasu R, Suetomi K, Yu Y, Silver A, Bedford JS, Cox R, et al. A deficiency in DNA repair and DNA-PKcs expression in the radiosensitive BALB/c mouse. Cancer Res. 2000;60(16):4342–5.PubMed Okayasu R, Suetomi K, Yu Y, Silver A, Bedford JS, Cox R, et al. A deficiency in DNA repair and DNA-PKcs expression in the radiosensitive BALB/c mouse. Cancer Res. 2000;60(16):4342–5.PubMed
40.
go back to reference Yu Y, Okayasu R, Weil MM, Silver A, McCarthy M, Zabriskie R, et al. Elevated breast cancer risk in irradiated BALB/c mice associates with unique functional polymorphism of the Prkdc (DNA-dependent protein kinase catalytic subunit) gene. Cancer Res. 2001;61(5):1820–4.PubMed Yu Y, Okayasu R, Weil MM, Silver A, McCarthy M, Zabriskie R, et al. Elevated breast cancer risk in irradiated BALB/c mice associates with unique functional polymorphism of the Prkdc (DNA-dependent protein kinase catalytic subunit) gene. Cancer Res. 2001;61(5):1820–4.PubMed
41.
go back to reference Mori N, Matsumoto Y, Okumoto M, Suzuki N, Yamate J. Variations in Prkdc encoding the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) and susceptibility to radiation-induced apoptosis and lymphomagenesis. Oncogene. 2001;20(28):3609–19.PubMedCrossRef Mori N, Matsumoto Y, Okumoto M, Suzuki N, Yamate J. Variations in Prkdc encoding the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) and susceptibility to radiation-induced apoptosis and lymphomagenesis. Oncogene. 2001;20(28):3609–19.PubMedCrossRef
42.
go back to reference Degg NL, Weil MM, Edwards A, Haines J, Coster M, Moody J, et al. Adenoma multiplicity in irradiated Apc(Min) mice is modified by chromosome 16 segments from BALB/c. Cancer Res. 2003;6(10):2361–3. Degg NL, Weil MM, Edwards A, Haines J, Coster M, Moody J, et al. Adenoma multiplicity in irradiated Apc(Min) mice is modified by chromosome 16 segments from BALB/c. Cancer Res. 2003;6(10):2361–3.
43.
go back to reference Fabre KM, Ramaiah L, Dregalla RC, Desaintes C, Weil MM, Bailey SM, et al. Murine Prkdc polymorphisms impact DNA-PKcs function. Radiat Res. 2011;175(4):493–500.PubMedCentralPubMedCrossRef Fabre KM, Ramaiah L, Dregalla RC, Desaintes C, Weil MM, Bailey SM, et al. Murine Prkdc polymorphisms impact DNA-PKcs function. Radiat Res. 2011;175(4):493–500.PubMedCentralPubMedCrossRef
44.
go back to reference Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, et al. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133:66–77.PubMedCentralPubMedCrossRef Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, et al. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133:66–77.PubMedCentralPubMedCrossRef
45.
go back to reference Kim SH, Park YY, Kim SW, Lee JS, Wang D, DuBois RN. ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression. Cancer Res. 2011;71:7010–20.PubMedCentralPubMedCrossRef Kim SH, Park YY, Kim SW, Lee JS, Wang D, DuBois RN. ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression. Cancer Res. 2011;71:7010–20.PubMedCentralPubMedCrossRef
46.
go back to reference Adhikary T, Brandt DT, Kaddatz K, Stockert J, Naruhn S, Meissner W, et al. Inverse PPARβ/δ agonists suppress oncogenic signaling to the ANGPTL4 gene and inhibit cancer cell invasion. Oncogene. 2013;32:5241–52.PubMedCentralPubMedCrossRef Adhikary T, Brandt DT, Kaddatz K, Stockert J, Naruhn S, Meissner W, et al. Inverse PPARβ/δ agonists suppress oncogenic signaling to the ANGPTL4 gene and inhibit cancer cell invasion. Oncogene. 2013;32:5241–52.PubMedCentralPubMedCrossRef
47.
go back to reference Tan MJ, Teo Z, Sng MK, Zhu P, Tan NS. Emerging roles of angiopoietin-like 4 in human cancer. Mol Cancer Res. 2012;10(6):677–88.PubMedCrossRef Tan MJ, Teo Z, Sng MK, Zhu P, Tan NS. Emerging roles of angiopoietin-like 4 in human cancer. Mol Cancer Res. 2012;10(6):677–88.PubMedCrossRef
48.
go back to reference Guo L, Li SY, Ji FY, Zhao YF, Zhong Y, Lv X, et al. Role of Angptl4 in vascular permeability and inflammation. Inflamm Res. 2014;63(1):13–22.PubMedCrossRef Guo L, Li SY, Ji FY, Zhao YF, Zhong Y, Lv X, et al. Role of Angptl4 in vascular permeability and inflammation. Inflamm Res. 2014;63(1):13–22.PubMedCrossRef
49.
go back to reference Gery S, Koeffler HP. The role of circadian regulation in cancer. Cold Spring Harb Symp Quant Biol. 2007;72:459–64.PubMedCrossRef Gery S, Koeffler HP. The role of circadian regulation in cancer. Cold Spring Harb Symp Quant Biol. 2007;72:459–64.PubMedCrossRef
50.
go back to reference Zhao H, Zeng ZL, Yang J, Jin Y, Qiu MZ, Hu XY, et al. Prognostic relevance of Period1 (Per1) and Period2 (Per2) expression in human gastric cancer. Int J Clin Exp Pathol. 2014;7:619–30.PubMedCentralPubMed Zhao H, Zeng ZL, Yang J, Jin Y, Qiu MZ, Hu XY, et al. Prognostic relevance of Period1 (Per1) and Period2 (Per2) expression in human gastric cancer. Int J Clin Exp Pathol. 2014;7:619–30.PubMedCentralPubMed
51.
go back to reference Kelleher FC, Rao A, Maguire A. Circadian molecular clocks and cancer. Cancer Lett. 2014;342:9–18.PubMedCrossRef Kelleher FC, Rao A, Maguire A. Circadian molecular clocks and cancer. Cancer Lett. 2014;342:9–18.PubMedCrossRef
52.
go back to reference Fu L, Pelicano H, Liu J, Huang P, Lee CC. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell. 2002;111(1):41–50.PubMedCrossRef Fu L, Pelicano H, Liu J, Huang P, Lee CC. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell. 2002;111(1):41–50.PubMedCrossRef
53.
go back to reference Koike M, Ninomiya Y, Koike A. Characterization of Ninjurin and TSC22 induction after X-irradiation of normal human skin cells. J Dermatol. 2008;35(1):6–17.PubMedCrossRef Koike M, Ninomiya Y, Koike A. Characterization of Ninjurin and TSC22 induction after X-irradiation of normal human skin cells. J Dermatol. 2008;35(1):6–17.PubMedCrossRef
54.
go back to reference Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, et al. Large-scale concatenation cDNA sequencing. Genome Res. 1997;7:353–8.PubMedCentralPubMed Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, et al. Large-scale concatenation cDNA sequencing. Genome Res. 1997;7:353–8.PubMedCentralPubMed
55.
go back to reference Ayroldi E, Migliorati G, Bruscoli S, Marchetti C, Zollo O, Cannarile L, et al. Modulation of T-cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor kappaB. Blood (United States). 2001;98:743–53. Ayroldi E, Migliorati G, Bruscoli S, Marchetti C, Zollo O, Cannarile L, et al. Modulation of T-cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor kappaB. Blood (United States). 2001;98:743–53.
56.
go back to reference Zhao W, Chuang EY, Mishra M, Awwad R, Bisht K, Sun L, et al. Distinct effects of ionizing radiation on in vivo murine kidney and brain normal tissue gene expression. Clin Cancer Res. 2006;12:3823–30.PubMedCrossRef Zhao W, Chuang EY, Mishra M, Awwad R, Bisht K, Sun L, et al. Distinct effects of ionizing radiation on in vivo murine kidney and brain normal tissue gene expression. Clin Cancer Res. 2006;12:3823–30.PubMedCrossRef
57.
go back to reference Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421:499–506.PubMedCrossRef Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421:499–506.PubMedCrossRef
Metadata
Title
Transcriptional response in normal mouse tissues after i.v. 211At administration - response related to absorbed dose, dose rate, and time
Authors
Britta Langen
Nils Rudqvist
Toshima Z Parris
Emil Schüler
Johan Spetz
Khalil Helou
Eva Forssell-Aronsson
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2015
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-014-0078-7

Other articles of this Issue 1/2015

EJNMMI Research 1/2015 Go to the issue