Skip to main content
Top
Published in: Autoimmunity Highlights 1/2019

Open Access 01-12-2019 | Original Research

Preclinical studies on the toxicology, pharmacokinetics and safety of K1-70TM a human monoclonal autoantibody to the TSH receptor with TSH antagonist activity

Authors: Jadwiga Furmaniak, Jane Sanders, Jill Clark, Jane Wilmot, Paul Sanders, Yang Li, Bernard Rees Smith

Published in: Autoimmunity Highlights | Issue 1/2019

Login to get access

Abstract

Background

The human monoclonal autoantibody K1-70™ binds to the TSH receptor (TSHR) with high affinity and blocks TSHR cyclic AMP stimulation by TSH and thyroid stimulating autoantibodies.

Methods

The preclinical toxicology assessment following weekly intravenous (IV) or intramuscular (IM) administration of K1-70™ in rats and cynomolgus monkeys for 29 days was carried out. An assessment of delayed onset toxicity and/or reversibility of toxicity was made during a further 4 week treatment free period. The pharmacokinetic parameters of K1-70™ and the effects of different doses of K1-70™ on serum thyroid hormone levels in the study animals were determined in rats and primates after IV and IM administration.

Results

Low serum levels of T3 and T4 associated with markedly elevated levels of TSH were observed in the study animals following IV and IM administration of K1-70™. The toxicological findings were attributed to the pharmacology of K1-70™ and were consistent with the hypothyroid state. The no observable adverse effect level (NOAEL) could not be established in the rat study while in the primate study it was 100 mg/kg/dose for both males and females.

Conclusions

The toxicology, pharmacodynamic and pharmacokinetic data in this preclinical study were helpful in designing the first in human study with K1-70™ administered to subjects with Graves’ disease.
Literature
1.
go back to reference Rees Smith B, Sanders J, Furmaniak J. TSH receptor antibodies. Thyroid. 2007;17(10):923–38.CrossRef Rees Smith B, Sanders J, Furmaniak J. TSH receptor antibodies. Thyroid. 2007;17(10):923–38.CrossRef
2.
go back to reference Evans M, Sanders J, Tagami T, Sanders P, Young S, Roberts E, et al. Monoclonal autoantibodies to the TSH receptor, one with stimulating activity and one with blocking activity, obtained from the same blood sample. Clin Endocrinol. 2010;73(3):404–12.CrossRef Evans M, Sanders J, Tagami T, Sanders P, Young S, Roberts E, et al. Monoclonal autoantibodies to the TSH receptor, one with stimulating activity and one with blocking activity, obtained from the same blood sample. Clin Endocrinol. 2010;73(3):404–12.CrossRef
3.
go back to reference Sanders P, Young S, Sanders J, Kabelis K, Baker S, Sullivan A, et al. Crystal structure of the TSH receptor (TSHR) bound to a blocking-type TSHR autoantibody. J Mol Endocrinol. 2011;46(2):81–99.PubMed Sanders P, Young S, Sanders J, Kabelis K, Baker S, Sullivan A, et al. Crystal structure of the TSH receptor (TSHR) bound to a blocking-type TSHR autoantibody. J Mol Endocrinol. 2011;46(2):81–99.PubMed
4.
go back to reference Bartalena L, Macchia PE, Marcocci C, Salvi M, Vermiglio F. Effects of treatment modalities for Graves’ hyperthyroidism on Graves’ orbitopathy: a 2015 Italian society of endocrinology consensus statement. J Endocrinol Invest. 2015;38:481–7.CrossRef Bartalena L, Macchia PE, Marcocci C, Salvi M, Vermiglio F. Effects of treatment modalities for Graves’ hyperthyroidism on Graves’ orbitopathy: a 2015 Italian society of endocrinology consensus statement. J Endocrinol Invest. 2015;38:481–7.CrossRef
5.
go back to reference Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, Maia AL, et al. 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid. 2016;26(10):1343–421.CrossRef Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, Maia AL, et al. 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid. 2016;26(10):1343–421.CrossRef
6.
go back to reference Kotwal A, Stan M. Current and future treatments for Graves’ disease and Graves’ ophthalmopathy. Horm Metab Res. 2018;50(12):871–86.CrossRef Kotwal A, Stan M. Current and future treatments for Graves’ disease and Graves’ ophthalmopathy. Horm Metab Res. 2018;50(12):871–86.CrossRef
7.
go back to reference Bartalena L. Graves’ orbitopathy: imperfect treatments for a rare disease. Eur Thyroid J. 2013;2(4):259–69.CrossRef Bartalena L. Graves’ orbitopathy: imperfect treatments for a rare disease. Eur Thyroid J. 2013;2(4):259–69.CrossRef
8.
go back to reference Perros P, Dayan CM, Dickinson AJ, Ezra D, Estcourt S, Foley P, et al. Management of patients with Graves’ orbitopathy: initial assessment, management outside specialised centres and referral pathways. Clin Med. 2015;15(2):173–8.CrossRef Perros P, Dayan CM, Dickinson AJ, Ezra D, Estcourt S, Foley P, et al. Management of patients with Graves’ orbitopathy: initial assessment, management outside specialised centres and referral pathways. Clin Med. 2015;15(2):173–8.CrossRef
9.
go back to reference Draman MS, Ludgate M. Thyroid eye disease—an update. Expert Rev Ophthalmol. 2016;11(4):273–84.CrossRef Draman MS, Ludgate M. Thyroid eye disease—an update. Expert Rev Ophthalmol. 2016;11(4):273–84.CrossRef
10.
go back to reference Beck-Peccoz P. Antithyroid drugs are 65 years old: time for retirement? Endocrinology. 2008;149(12):5943–4.CrossRef Beck-Peccoz P. Antithyroid drugs are 65 years old: time for retirement? Endocrinology. 2008;149(12):5943–4.CrossRef
11.
go back to reference Emerson CH. When will thyrotropin receptor antagonists and inverse thyrotropin receptor agonists become available for clinical use? Thyroid. 2011;21(8):817–9.CrossRef Emerson CH. When will thyrotropin receptor antagonists and inverse thyrotropin receptor agonists become available for clinical use? Thyroid. 2011;21(8):817–9.CrossRef
12.
go back to reference Louvet C, Bellis AD, Pereira B, Bournaud C, Kelly A, Maqdasy S, et al. Time course of Graves’ orbitopathy after total thyroidectomy and radioiodine therapy for thyroid cancer. Medicine. 2016;95(48):e5474.CrossRef Louvet C, Bellis AD, Pereira B, Bournaud C, Kelly A, Maqdasy S, et al. Time course of Graves’ orbitopathy after total thyroidectomy and radioiodine therapy for thyroid cancer. Medicine. 2016;95(48):e5474.CrossRef
13.
go back to reference Rowe CW, Paul JW, Gedye C, Tolosa JM, Bendinelli C, McGrath S, et al. Targeting the TSH receptor in thyroid cancer. Endocr Relat Cancer. 2017;24(6):R191–202.CrossRef Rowe CW, Paul JW, Gedye C, Tolosa JM, Bendinelli C, McGrath S, et al. Targeting the TSH receptor in thyroid cancer. Endocr Relat Cancer. 2017;24(6):R191–202.CrossRef
14.
go back to reference Folkestad L, Brandt F, Brix T, Vogsen M, Bastholt L, Grupe P, et al. Total thyroidectomy for thyroid cancer followed by thyroid storm due to thyrotropin receptor antibody stimulation of metastatic thyroid tissue. Eur Thyroid J. 2017;6(5):276–80.CrossRef Folkestad L, Brandt F, Brix T, Vogsen M, Bastholt L, Grupe P, et al. Total thyroidectomy for thyroid cancer followed by thyroid storm due to thyrotropin receptor antibody stimulation of metastatic thyroid tissue. Eur Thyroid J. 2017;6(5):276–80.CrossRef
15.
go back to reference Aoyama M, Takizawa H, Tsuboi M, Nakagawa Y, Tangoku A. A case of metastatic follicular thyroid carcinoma complicated with Graves’ disease after total thyroidectomy. Endocr J. 2017;64(12):1143–7.CrossRef Aoyama M, Takizawa H, Tsuboi M, Nakagawa Y, Tangoku A. A case of metastatic follicular thyroid carcinoma complicated with Graves’ disease after total thyroidectomy. Endocr J. 2017;64(12):1143–7.CrossRef
16.
go back to reference Sanders J, Evans M, Premawardhana LD, Depraetere H, Jeffreys J, Richards T, et al. Human monoclonal thyroid stimulating autoantibody. Lancet. 2003;362(9378):126–8.CrossRef Sanders J, Evans M, Premawardhana LD, Depraetere H, Jeffreys J, Richards T, et al. Human monoclonal thyroid stimulating autoantibody. Lancet. 2003;362(9378):126–8.CrossRef
17.
go back to reference Furmaniak J, Sanders J, Young S, Kabelis K, Sanders P, Evans M, et al. In vivo effects of a human thyroid-stimulating monoclonal autoantibody (M22) and a human thyroid-blocking autoantibody (K1-70). Auto Immun Highlights. 2012;3(1):19–25.CrossRef Furmaniak J, Sanders J, Young S, Kabelis K, Sanders P, Evans M, et al. In vivo effects of a human thyroid-stimulating monoclonal autoantibody (M22) and a human thyroid-blocking autoantibody (K1-70). Auto Immun Highlights. 2012;3(1):19–25.CrossRef
18.
go back to reference Furmaniak J, Sanders J, Rees Smith B. Blocking type TSH receptor antibodies. Autoimmun Highlights. 2013;4:11–26.CrossRef Furmaniak J, Sanders J, Rees Smith B. Blocking type TSH receptor antibodies. Autoimmun Highlights. 2013;4:11–26.CrossRef
19.
go back to reference Greaves P. Histopathology of preclinical toxicity studies: interpretation and relevance in drug safety evaluation. Chapter 13. 4th ed. Cambridge: Academic Press; 2012. p. 725–97.CrossRef Greaves P. Histopathology of preclinical toxicity studies: interpretation and relevance in drug safety evaluation. Chapter 13. 4th ed. Cambridge: Academic Press; 2012. p. 725–97.CrossRef
20.
go back to reference Tohei A. Studies on the functional relationship between thyroid, adrenal and gonadal hormones. J Reprod Dev. 2004;50(1):9–20.CrossRef Tohei A. Studies on the functional relationship between thyroid, adrenal and gonadal hormones. J Reprod Dev. 2004;50(1):9–20.CrossRef
21.
go back to reference Iglesias P, Diez JJ. Thyroid dysfunction and kidney disease. Eur J Endocrinol. 2009;160(4):503–15.CrossRef Iglesias P, Diez JJ. Thyroid dysfunction and kidney disease. Eur J Endocrinol. 2009;160(4):503–15.CrossRef
22.
go back to reference Hard GC, Rodgers IS, Baetcke KP, Richards WL, McGaughy RE, Valcovic LR. Hazard evaluation of chemicals that cause accumulation of α2μ globulin, hyaline droplet nephropathy, and tubule neoplasia in the kedneys of male rats. Environ Health Perspect. 1993;99:313–49.PubMedPubMedCentral Hard GC, Rodgers IS, Baetcke KP, Richards WL, McGaughy RE, Valcovic LR. Hazard evaluation of chemicals that cause accumulation of α globulin, hyaline droplet nephropathy, and tubule neoplasia in the kedneys of male rats. Environ Health Perspect. 1993;99:313–49.PubMedPubMedCentral
23.
go back to reference Vargas F, Moreno JM, Rodriguez-Gomez I, Wangensteen R, Osuna A, Alvarez-Guerra M, et al. Vascular and renal function in experimental thyroid disorders. Eur J Endocrinol. 2006;154(2):197–212.CrossRef Vargas F, Moreno JM, Rodriguez-Gomez I, Wangensteen R, Osuna A, Alvarez-Guerra M, et al. Vascular and renal function in experimental thyroid disorders. Eur J Endocrinol. 2006;154(2):197–212.CrossRef
24.
go back to reference Greaves P. Histopathology of preclinical toxicity studies: interpretation and relevance in drug safety evaluation. Chapter 11. 4th ed. Cambridge: Academic Press; 2012. p. 615–66.CrossRef Greaves P. Histopathology of preclinical toxicity studies: interpretation and relevance in drug safety evaluation. Chapter 11. 4th ed. Cambridge: Academic Press; 2012. p. 615–66.CrossRef
25.
go back to reference Baht HS, Saggerson ED. A tissue-specific increase in lipogenesis in rat brown adipose tissue in hypothyroidism. Biochem J. 1988;251(2):553–7.CrossRef Baht HS, Saggerson ED. A tissue-specific increase in lipogenesis in rat brown adipose tissue in hypothyroidism. Biochem J. 1988;251(2):553–7.CrossRef
26.
go back to reference Davies TF, Teng CS, McLachlan SM, Rees Smith B, Hall R. Thyrotropin receptor in adipose tissue, retro-orbital tissue and lymphocytes. Mol Cell Endocrinol. 1978;9(3):303–10.CrossRef Davies TF, Teng CS, McLachlan SM, Rees Smith B, Hall R. Thyrotropin receptor in adipose tissue, retro-orbital tissue and lymphocytes. Mol Cell Endocrinol. 1978;9(3):303–10.CrossRef
27.
go back to reference Davies T, Marians R, Latif R. The TSH receptor reveals itself. J Clin Invest. 2002;110(2):161–4.CrossRef Davies T, Marians R, Latif R. The TSH receptor reveals itself. J Clin Invest. 2002;110(2):161–4.CrossRef
28.
go back to reference de Lloyd A, Bursell J, Gregory JW, Rees DA, Ludgate M. TSH receptor activation and body composition. J Endocrinol. 2010;204(1):13–20.CrossRef de Lloyd A, Bursell J, Gregory JW, Rees DA, Ludgate M. TSH receptor activation and body composition. J Endocrinol. 2010;204(1):13–20.CrossRef
29.
go back to reference Williams GR. Extrathyroidal expression of TSH receptor. Ann Endocrinol. 2011;72(2):68–73.CrossRef Williams GR. Extrathyroidal expression of TSH receptor. Ann Endocrinol. 2011;72(2):68–73.CrossRef
30.
go back to reference Gershengorn MC, Neumann S. Update in TSH receptor agonists and antagonists. J Clin Endocrinol Metab. 2012;97(12):4287–92.CrossRef Gershengorn MC, Neumann S. Update in TSH receptor agonists and antagonists. J Clin Endocrinol Metab. 2012;97(12):4287–92.CrossRef
31.
go back to reference Squizzato A, Romualdi E, Büller HR, Gerdes VE. Clinical review: thyroid dysfunction and effects on coagulation and fibrinolysis: a systematic review. J Clin Endocrinol Metab. 2007;92(7):2415–20.CrossRef Squizzato A, Romualdi E, Büller HR, Gerdes VE. Clinical review: thyroid dysfunction and effects on coagulation and fibrinolysis: a systematic review. J Clin Endocrinol Metab. 2007;92(7):2415–20.CrossRef
33.
go back to reference Abou-Rabia N, Kendall MD. Involution of the rat thymus in experimentally induced hypothyroidism. Cell Tissue Res. 1994;277(3):447–55.CrossRef Abou-Rabia N, Kendall MD. Involution of the rat thymus in experimentally induced hypothyroidism. Cell Tissue Res. 1994;277(3):447–55.CrossRef
34.
go back to reference Vieira P, Rajewsky K. The half-lives of serum immunoglobulins in adult mice. Eur J Immunol. 1988;18(2):313–6.CrossRef Vieira P, Rajewsky K. The half-lives of serum immunoglobulins in adult mice. Eur J Immunol. 1988;18(2):313–6.CrossRef
35.
go back to reference Datta-Mannan A, Witcher DR, Tang Y, Watkins J, Wroblewski VJ. Monoclonal antibody clearance: impact of modulating the interaction of IgG with the neonatal Fc receptor. J Biol Chem. 2007;282(3):1709–17.CrossRef Datta-Mannan A, Witcher DR, Tang Y, Watkins J, Wroblewski VJ. Monoclonal antibody clearance: impact of modulating the interaction of IgG with the neonatal Fc receptor. J Biol Chem. 2007;282(3):1709–17.CrossRef
36.
go back to reference Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacomet Syst Parmacol. 2017;6(9):576–88.CrossRef Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacomet Syst Parmacol. 2017;6(9):576–88.CrossRef
37.
go back to reference FDA. Guidance for industry, estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers, US Department of Health and Human Services, Food and Drug Administration, CDER, July 2005. 2005. https://www.federalregister.gov/d/05-14456. Accessed 17 July 2019. FDA. Guidance for industry, estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers, US Department of Health and Human Services, Food and Drug Administration, CDER, July 2005. 2005. https://​www.​federalregister.​gov/​d/​05-14456. Accessed 17 July 2019.
38.
go back to reference Nakatake N, Sanders J, Richards T, Burne P, Barrett C, Dal Pra C, et al. Estimation of serum TSH receptor autoantibody concentration and affinity. Thyroid. 2006;16(11):1077–84.CrossRef Nakatake N, Sanders J, Richards T, Burne P, Barrett C, Dal Pra C, et al. Estimation of serum TSH receptor autoantibody concentration and affinity. Thyroid. 2006;16(11):1077–84.CrossRef
Metadata
Title
Preclinical studies on the toxicology, pharmacokinetics and safety of K1-70TM a human monoclonal autoantibody to the TSH receptor with TSH antagonist activity
Authors
Jadwiga Furmaniak
Jane Sanders
Jill Clark
Jane Wilmot
Paul Sanders
Yang Li
Bernard Rees Smith
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Autoimmunity Highlights / Issue 1/2019
Print ISSN: 2038-0305
Electronic ISSN: 2038-3274
DOI
https://doi.org/10.1186/s13317-019-0121-9

Other articles of this Issue 1/2019

Autoimmunity Highlights 1/2019 Go to the issue