Skip to main content
Top
Published in: Journal of Medical Case Reports 1/2018

Open Access 01-12-2018 | Case report

Giant prolactinoma, germline BRCA1 mutation, and depression: a case report

Authors: Rita Bettencourt-Silva, Joana Queirós, Josué Pereira, Davide Carvalho

Published in: Journal of Medical Case Reports | Issue 1/2018

Login to get access

Abstract

Background

Giant prolactinomas are very rare pituitary tumors that may exhibit an aggressive behavior and present with a life-threatening condition.

Case presentation

A 25-year-old white woman was admitted to our hospital with a headache, psychomotor retardation, reduced vision, and loss of autonomy in daily activities. Her past medical history was significant for having oligomenorrhea and a depressive syndrome since her mother’s death. She also had a breast cancer gene 1 (BRCA1) mutation and a family history of breast cancer. She had marked hyperprolactinemia (7615 ng/dL), central hypocortisolism, growth hormone deficiency, and a giant pituitary tumor (52 × 30 × 33 mm) which was shown in magnetic resonance imaging with obstructive hydrocephalus, requiring emergency surgery. Treatment with cabergoline led to a 99.8% reduction in serum prolactin levels and significant tumor shrinkage. Her depressive symptoms progressively improved and psychiatric drugs were withdrawn after 3 months of cabergoline treatment. Currently, she is being followed in Endocrinology, Neurosurgery, and Neurophthalmology out-patient clinics and in a breast cancer unit. Careful monitoring, support, and follow-up will be essential throughout this patient’s life.

Conclusions

This case is a rare presentation of a giant prolactinoma in a young woman, who presented a life-threatening event. She also had an unexpected association between diseases or symptoms that may have contributed to the delay in diagnosis. Given the concomitant presence of a giant prolactinoma, a BRCA1 mutation, and depressive symptoms, a possible association was hypothesized. The breast cancer risk in a BRCA1 mutation carrier and the possible interference of hyperprolactinemia and life events were also discussed. However this hypothesis requires further investigation.
Literature
1.
go back to reference Maiter D, Delgrange E. Therapy of endocrine disease: the challenges in managing giant prolactinomas. Eur J Endocrinol. 2014;170:R213–27.CrossRefPubMed Maiter D, Delgrange E. Therapy of endocrine disease: the challenges in managing giant prolactinomas. Eur J Endocrinol. 2014;170:R213–27.CrossRefPubMed
2.
go back to reference Moraes AB, Silva CM, Vieira Neto L, Gadelha MR. Giant prolactinomas: the therapeutic approach. Clin Endocrinol. 2013;79:447–56.CrossRef Moraes AB, Silva CM, Vieira Neto L, Gadelha MR. Giant prolactinomas: the therapeutic approach. Clin Endocrinol. 2013;79:447–56.CrossRef
3.
go back to reference Torner L. Actions of Prolactin in the Brain: From Physiological Adaptations to Stress and Neurogenesis to Psychopathology. Front Endocrinol (Lausanne). 2016;7:25.CrossRef Torner L. Actions of Prolactin in the Brain: From Physiological Adaptations to Stress and Neurogenesis to Psychopathology. Front Endocrinol (Lausanne). 2016;7:25.CrossRef
4.
go back to reference Vargas KG, Milic J, Zaciragic A, et al. The functions of estrogen receptor beta in the female brain: A systematic review. Maturitas. 2016;93:41–57.CrossRefPubMed Vargas KG, Milic J, Zaciragic A, et al. The functions of estrogen receptor beta in the female brain: A systematic review. Maturitas. 2016;93:41–57.CrossRefPubMed
5.
go back to reference Sonino N, Navarrini C, Ruini C, Fallo F, Boscaro M, Fava GA. Life events in the pathogenesis of hyperprolactinemia. Eur J Endocrinol. 2004;151:61–5.CrossRefPubMed Sonino N, Navarrini C, Ruini C, Fallo F, Boscaro M, Fava GA. Life events in the pathogenesis of hyperprolactinemia. Eur J Endocrinol. 2004;151:61–5.CrossRefPubMed
6.
go back to reference Lecoq AL, Kamenicky P, Guiochon-Mantel A, Chanson P. Genetic mutations in sporadic pituitary adenomas--what to screen for? Nat Rev Endocrinol. 2015;11:43–54.CrossRefPubMed Lecoq AL, Kamenicky P, Guiochon-Mantel A, Chanson P. Genetic mutations in sporadic pituitary adenomas--what to screen for? Nat Rev Endocrinol. 2015;11:43–54.CrossRefPubMed
7.
go back to reference Clevenger CV, Furth PA, Hankinson SE, Schuler LA. The role of prolactin in mammary carcinoma. Endocr Rev. 2003;24(1):1–27.CrossRefPubMed Clevenger CV, Furth PA, Hankinson SE, Schuler LA. The role of prolactin in mammary carcinoma. Endocr Rev. 2003;24(1):1–27.CrossRefPubMed
8.
go back to reference Strungs I, Gray RA, Rigby HB, Strutton G. Two case reports of breast carcinoma associated with prolactinoma. Pathology. 1997;29(3):320–3.CrossRefPubMed Strungs I, Gray RA, Rigby HB, Strutton G. Two case reports of breast carcinoma associated with prolactinoma. Pathology. 1997;29(3):320–3.CrossRefPubMed
9.
go back to reference Forloni F, Giovilli M, Pecis C, et al. Pituitary prolactin-secreting macroadenoma combined with bilateral breast cancer in a 45-year-old male. J Endocrinol Investig. 2001;24(6):454–9.CrossRef Forloni F, Giovilli M, Pecis C, et al. Pituitary prolactin-secreting macroadenoma combined with bilateral breast cancer in a 45-year-old male. J Endocrinol Investig. 2001;24(6):454–9.CrossRef
11.
go back to reference Tikk K, Sookthai D, Fortner RT, et al. Circulating prolactin and in situ breast cancer risk in the European EPIC cohort: a case-control study. Breast Cancer Res. 2015;31(17):49.CrossRef Tikk K, Sookthai D, Fortner RT, et al. Circulating prolactin and in situ breast cancer risk in the European EPIC cohort: a case-control study. Breast Cancer Res. 2015;31(17):49.CrossRef
12.
go back to reference Tikk K, Sookthai D, Johnson T, et al. Circulating prolactin and breast cancer risk among pre- and postmenopausal women in the EPIC cohort. Ann Oncol. 2014;25(7):1422–8.CrossRefPubMed Tikk K, Sookthai D, Johnson T, et al. Circulating prolactin and breast cancer risk among pre- and postmenopausal women in the EPIC cohort. Ann Oncol. 2014;25(7):1422–8.CrossRefPubMed
14.
go back to reference Tworoger SS, Sluss P, Hankinson SE. Association between plasma prolactin concentrations and risk of breast cancer among predominately premenopausal women. Cancer Res. 2006;66:2476–82.CrossRefPubMed Tworoger SS, Sluss P, Hankinson SE. Association between plasma prolactin concentrations and risk of breast cancer among predominately premenopausal women. Cancer Res. 2006;66:2476–82.CrossRefPubMed
15.
go back to reference Dekkers OM, Romijn JA, de Boer A, Vandenbroucke JP. The risk for breast cancer is not evidently increased in women with hyperprolactinemia. Pituitary. 2010;13:195–8.CrossRefPubMed Dekkers OM, Romijn JA, de Boer A, Vandenbroucke JP. The risk for breast cancer is not evidently increased in women with hyperprolactinemia. Pituitary. 2010;13:195–8.CrossRefPubMed
16.
go back to reference Berinder K, Akre O, Granath F, Hulting AL. Cancer risk in hyperprolactinemia patients: a population-based cohort study. Eur J Endocrinol. 2011;165(2):209–15.CrossRefPubMed Berinder K, Akre O, Granath F, Hulting AL. Cancer risk in hyperprolactinemia patients: a population-based cohort study. Eur J Endocrinol. 2011;165(2):209–15.CrossRefPubMed
17.
go back to reference Holtkamp W, Nagel GA, Wander HE, Rauschecker HF, von Heyden D. Hyperprolactinemia is an indicator of progressive disease and poor prognosis in advanced breast cancer. Int J Cancer. 1984;34(3):323–8.CrossRefPubMed Holtkamp W, Nagel GA, Wander HE, Rauschecker HF, von Heyden D. Hyperprolactinemia is an indicator of progressive disease and poor prognosis in advanced breast cancer. Int J Cancer. 1984;34(3):323–8.CrossRefPubMed
18.
go back to reference Bakhtou H, Olfatbakhsh A, Deezagi A, Ahangari G. The expression of dopamine receptors gene and their potential role in targeting breast cancer cells with selective agonist and antagonist drugs. Could it be the novel insight to therapy? Curr Drug Discov Technol. 2018. https://doi.org/10.2174/1570163815666180130101421. [Epub ahead of print] Bakhtou H, Olfatbakhsh A, Deezagi A, Ahangari G. The expression of dopamine receptors gene and their potential role in targeting breast cancer cells with selective agonist and antagonist drugs. Could it be the novel insight to therapy? Curr Drug Discov Technol. 2018. https://​doi.​org/​10.​2174/​1570163815666180​130101421. [Epub ahead of print]
19.
go back to reference Costa R, Santa-Maria CA, Scholtens DM, et al. A pilot study of cabergoline for the treatment of metastatic breast cancer. Breast Cancer Res Treat. 2017;165(3):585–92.CrossRefPubMed Costa R, Santa-Maria CA, Scholtens DM, et al. A pilot study of cabergoline for the treatment of metastatic breast cancer. Breast Cancer Res Treat. 2017;165(3):585–92.CrossRefPubMed
20.
go back to reference Petrucelli N, Daly MB, Pal T. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mefford HC, et al., editors. GeneReviews(R). Seattle: University of Washington; 1993. Petrucelli N, Daly MB, Pal T. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mefford HC, et al., editors. GeneReviews(R). Seattle: University of Washington; 1993.
21.
go back to reference Clendenen TV, Arslan AA, Lokshin AE, Liu M, Lundin E, Koenig KL, et al. Circulating prolactin levels and risk of epithelial ovarian cancer. Cancer Causes Control. 2013;24:741–8.CrossRefPubMedPubMedCentral Clendenen TV, Arslan AA, Lokshin AE, Liu M, Lundin E, Koenig KL, et al. Circulating prolactin levels and risk of epithelial ovarian cancer. Cancer Causes Control. 2013;24:741–8.CrossRefPubMedPubMedCentral
Metadata
Title
Giant prolactinoma, germline BRCA1 mutation, and depression: a case report
Authors
Rita Bettencourt-Silva
Joana Queirós
Josué Pereira
Davide Carvalho
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Medical Case Reports / Issue 1/2018
Electronic ISSN: 1752-1947
DOI
https://doi.org/10.1186/s13256-018-1890-x

Other articles of this Issue 1/2018

Journal of Medical Case Reports 1/2018 Go to the issue