Skip to main content
Top
Published in: Journal of Medical Case Reports 1/2015

Open Access 01-12-2015 | Case report

Multidisciplinary approach and anesthetic management of a surgical cancer patient with methylene tetrahydrofolate reductase deficiency: a case report and review of the literature

Authors: Marco Cascella, Manuela Arcamone, Emanuela Morelli, Daniela Viscardi, Viera Russo, Silvia De Franciscis, Andrea Belli, Rosanna Accardo, Domenico Caliendo, Elena De Luca, Barbara Di Caprio, Francesco Di Sauro, Giovanni Giannoni, Carmine Iermano, Maria Maciariello, Marcella Marracino, Arturo Cuomo

Published in: Journal of Medical Case Reports | Issue 1/2015

Login to get access

Abstract

Introduction

Hyperhomocysteinemia is a known risk factor for myocardial infarction, stroke, peripheral vascular disease, and thrombosis. Elevated plasma homocysteine levels have been demonstrated in patients with recurrent episodes or a single episode of thrombosis. Here we describe the development of cardiovascular disease as a complication of a surgical intervention in a patient with colorectal cancer and hyperhomocysteinemia.

Case presentation

A 65-year-old Caucasian man complained of pain and constipation, attributed to previously diagnosed adenocarcinoma (stage IIB) of the hepatic flexure. An anamnestic investigation showed that he had undergone two surgical interventions. During both, he suffered thrombotic postoperative complications, a deep vein thrombosis of the upper extremity after the first operation and retinal vein occlusion after the second. He was diagnosed with hyperhomocysteinemia associated with a homozygous C677T mutation of the gene encoding the enzyme methylenetetrahydrofolate reductase. Our patient was initially treated with folic acid and high-dose B vitamins. On day 7 he underwent a right hemicolectomy. Anesthesia was performed with sevoflurane in 40% O2 and without the use of nitrous oxide. Postoperatively, our patient remained on folic acid and B vitamins and was without immediate or subsequent complications.

Conclusions

Neoplastic disease and related surgery followed by the administration of chemotherapeutic drugs alter the hemostatic balance in cancer patients. Those suspected of also having a thrombophilic disease require a thorough laboratory diagnostic workup, including a molecular analysis aimed at identifying the genetic mutation responsible for the hyperhomocysteinemia, as indicated. The case described in this report highlights the importance of a multidisciplinary approach that includes expertise in peri-operative anesthesia, surgery, oncology, and hematology.
Literature
2.
go back to reference Blom HJ, Smulders Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J Inherit Metab Dis. 2011;34:75–81.CrossRefPubMed Blom HJ, Smulders Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J Inherit Metab Dis. 2011;34:75–81.CrossRefPubMed
4.
go back to reference Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, Brener SJ, et al. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA. 2003;290:898–904.CrossRefPubMed Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, Brener SJ, et al. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA. 2003;290:898–904.CrossRefPubMed
5.
go back to reference Finkelstein JD, Martin JJ, Harris BJ. Methionine metabolism in mammals. The methionine-sparing effect of cysteine. J Biol Chem. 1988;263:11750–4.PubMed Finkelstein JD, Martin JJ, Harris BJ. Methionine metabolism in mammals. The methionine-sparing effect of cysteine. J Biol Chem. 1988;263:11750–4.PubMed
6.
go back to reference Malhotra S, Punia VP. Upper extremity deep vein thrombosis. J Assoc Phys India. 2004;52:237–41. Malhotra S, Punia VP. Upper extremity deep vein thrombosis. J Assoc Phys India. 2004;52:237–41.
7.
go back to reference Martin C, Viviand X, Saux P, Gouin F. Upper-extremity deep vein thrombosis after central venous catheterization via the axillary vein. Crit Care Med. 1999;27:2626–9.CrossRefPubMed Martin C, Viviand X, Saux P, Gouin F. Upper-extremity deep vein thrombosis after central venous catheterization via the axillary vein. Crit Care Med. 1999;27:2626–9.CrossRefPubMed
8.
go back to reference Prisco D, Bertini L, Marcucci R, Poli D. [Retinal vein occlusions: diseases for the internist?]. Ann Ital Med Int. 2000;15:75–84.PubMed Prisco D, Bertini L, Marcucci R, Poli D. [Retinal vein occlusions: diseases for the internist?]. Ann Ital Med Int. 2000;15:75–84.PubMed
9.
go back to reference Ferrazzi P, Di Micco P, Quaglia I, Rossi LS, Bellatorre AG, Gaspari G, et al. Homocysteine, MTHFR C677T gene polymorphism, folic acid and vitamin B 12 in patients with retinal vein occlusion. Thromb J. 2005;3:13.CrossRefPubMedPubMedCentral Ferrazzi P, Di Micco P, Quaglia I, Rossi LS, Bellatorre AG, Gaspari G, et al. Homocysteine, MTHFR C677T gene polymorphism, folic acid and vitamin B 12 in patients with retinal vein occlusion. Thromb J. 2005;3:13.CrossRefPubMedPubMedCentral
11.
12.
go back to reference Kozek-Langenecker SA. The effects of drugs used in anaesthesia on platelet membrane receptors and on platelet function. Curr Drug Targets. 2002;3:247–58.CrossRefPubMed Kozek-Langenecker SA. The effects of drugs used in anaesthesia on platelet membrane receptors and on platelet function. Curr Drug Targets. 2002;3:247–58.CrossRefPubMed
13.
go back to reference Deacon R, Lumb M, Perry J, Chanarin I, Minty B, Halsey MJ, et al. Selective inactivation of vitamin B12 in rats by nitrous oxide. Lancet. 1978;2:1023.CrossRefPubMed Deacon R, Lumb M, Perry J, Chanarin I, Minty B, Halsey MJ, et al. Selective inactivation of vitamin B12 in rats by nitrous oxide. Lancet. 1978;2:1023.CrossRefPubMed
14.
go back to reference Felmet K, Robins B, Tilford D, Hayflick SJ. Acute neurologic decompensation in an infant with cobalamin deficiency exposed to nitrous oxide. J Pediatr. 2000;137:427–8.CrossRefPubMed Felmet K, Robins B, Tilford D, Hayflick SJ. Acute neurologic decompensation in an infant with cobalamin deficiency exposed to nitrous oxide. J Pediatr. 2000;137:427–8.CrossRefPubMed
15.
go back to reference Hadzic A, Glab K, Sanborn KV, Thys DM. Severe neurologic deficit after nitrous oxide anesthesia. Anesthesiology. 1995;83:863–6.CrossRefPubMed Hadzic A, Glab K, Sanborn KV, Thys DM. Severe neurologic deficit after nitrous oxide anesthesia. Anesthesiology. 1995;83:863–6.CrossRefPubMed
16.
go back to reference Selzer RR, Rosenblatt DS, Laxova R, Hogan K. Adverse effect of nitrous oxide in a child with 5,10-methylene tetrahydrofolate reductase deficiency. N Engl J Med. 2003;349:45–50.CrossRefPubMed Selzer RR, Rosenblatt DS, Laxova R, Hogan K. Adverse effect of nitrous oxide in a child with 5,10-methylene tetrahydrofolate reductase deficiency. N Engl J Med. 2003;349:45–50.CrossRefPubMed
17.
go back to reference Nagele P, Zeugswetter B, Wiener C, Burger H, Hupfl M, Mittlbo M, et al. Influence of methylene tetrahydrofolate reductase gene polymorphisms on homocysteine concentrations after nitrous oxide anesthesia. Anesthesiology. 2008;109:36–43.CrossRefPubMed Nagele P, Zeugswetter B, Wiener C, Burger H, Hupfl M, Mittlbo M, et al. Influence of methylene tetrahydrofolate reductase gene polymorphisms on homocysteine concentrations after nitrous oxide anesthesia. Anesthesiology. 2008;109:36–43.CrossRefPubMed
18.
go back to reference Badner NH, Beattie WS, Freeman D, Spence JD. Nitrous oxide- induced increased homocysteine concentrations are associated with increased postoperative myocardial ischemia in patients undergoing carotid endarterectomy. Anesth Analg. 2000;91:1073–9.PubMed Badner NH, Beattie WS, Freeman D, Spence JD. Nitrous oxide- induced increased homocysteine concentrations are associated with increased postoperative myocardial ischemia in patients undergoing carotid endarterectomy. Anesth Analg. 2000;91:1073–9.PubMed
19.
go back to reference Koblin DD, Tomerson BW. Methionine synthase activities in mice following acute exposures to ethanol and nitrous oxide. Biochem Pharmacol. 1989;38:1353–8.CrossRefPubMed Koblin DD, Tomerson BW. Methionine synthase activities in mice following acute exposures to ethanol and nitrous oxide. Biochem Pharmacol. 1989;38:1353–8.CrossRefPubMed
20.
go back to reference Fleischmann KE, Goldman L, Young B, Lee TH. Association between cardiac and non cardiac complications in patients undergoing non cardiac surgery: Outcomes and effects on length of stay. Am J Med. 2003;115:515–20.CrossRefPubMed Fleischmann KE, Goldman L, Young B, Lee TH. Association between cardiac and non cardiac complications in patients undergoing non cardiac surgery: Outcomes and effects on length of stay. Am J Med. 2003;115:515–20.CrossRefPubMed
21.
go back to reference Badner NH, Knill RL, Brown JE, Novick TV, Gelb AW. Myocardial infarction after non cardiac surgery. Anesthesiology. 1998;88:572–8.CrossRefPubMed Badner NH, Knill RL, Brown JE, Novick TV, Gelb AW. Myocardial infarction after non cardiac surgery. Anesthesiology. 1998;88:572–8.CrossRefPubMed
22.
go back to reference Badner NH, Drader K, Freeman D, Spence JD. The use of intraoperative nitrous oxide leads to postoperative increases in plasma homocysteine. Anesth Analg. 1998;87:71. Badner NH, Drader K, Freeman D, Spence JD. The use of intraoperative nitrous oxide leads to postoperative increases in plasma homocysteine. Anesth Analg. 1998;87:71.
23.
go back to reference Myles PS, Leslie K, Chan MTV, Forbes A, Paech MJ, Peyton P, et al. Avoidance of nitrous oxide for patients undergoing major surgery. Anesthesiology. 2007;107:221–31.CrossRefPubMed Myles PS, Leslie K, Chan MTV, Forbes A, Paech MJ, Peyton P, et al. Avoidance of nitrous oxide for patients undergoing major surgery. Anesthesiology. 2007;107:221–31.CrossRefPubMed
24.
go back to reference Nagele P, Zeugswetter B, Huepfl M, Mittelboeck M, Foedinger M. Influence of mutations in the MTHFR gene on homocysteine levels after nitrous oxide anesthesia [abstract]. Anesthesiology. 2007;107:A7. Nagele P, Zeugswetter B, Huepfl M, Mittelboeck M, Foedinger M. Influence of mutations in the MTHFR gene on homocysteine levels after nitrous oxide anesthesia [abstract]. Anesthesiology. 2007;107:A7.
25.
go back to reference Nagele P, Brown F, Francis A, Scott MG, Gage BF, Miller JP, et al. Influence of nitrous oxide anesthesia, B-vitamins, and MTHFR gene polymorphisms on perioperative cardiac events: the vitamins in nitrous oxide (VINO) randomized trial. Anesthesiology. 2013;119:19–28.CrossRefPubMedPubMedCentral Nagele P, Brown F, Francis A, Scott MG, Gage BF, Miller JP, et al. Influence of nitrous oxide anesthesia, B-vitamins, and MTHFR gene polymorphisms on perioperative cardiac events: the vitamins in nitrous oxide (VINO) randomized trial. Anesthesiology. 2013;119:19–28.CrossRefPubMedPubMedCentral
26.
go back to reference Myles PS, Leslie K, Chan MT, Forbes A, Peyton PJ, Paech MJ, et al. The safety of addition of nitrous oxide to general anaesthesia in at-risk patients having major non-cardiac surgery (ENIGMA-II): a randomised, single-blind trial. Lancet. 2014;384:1446–54.CrossRefPubMed Myles PS, Leslie K, Chan MT, Forbes A, Peyton PJ, Paech MJ, et al. The safety of addition of nitrous oxide to general anaesthesia in at-risk patients having major non-cardiac surgery (ENIGMA-II): a randomised, single-blind trial. Lancet. 2014;384:1446–54.CrossRefPubMed
28.
go back to reference Zhuo WL, Zhang L, Ling JJ, Zhu Y, Chen ZT. MTHFR C677T and A1298C polymorphisms and cervical carcinoma susceptibility: meta-analyses based on 4,421 individuals. Mol Biol Rep. 2012;39:8723–32.CrossRefPubMed Zhuo WL, Zhang L, Ling JJ, Zhu Y, Chen ZT. MTHFR C677T and A1298C polymorphisms and cervical carcinoma susceptibility: meta-analyses based on 4,421 individuals. Mol Biol Rep. 2012;39:8723–32.CrossRefPubMed
29.
go back to reference Pu D, Jiang SW, Wu J. Association between MTHFR gene polymorphism and the risk of ovarian cancer: a meta-analysis of the literature. Curr Pharm Des. 2014;20:1632–8.CrossRefPubMed Pu D, Jiang SW, Wu J. Association between MTHFR gene polymorphism and the risk of ovarian cancer: a meta-analysis of the literature. Curr Pharm Des. 2014;20:1632–8.CrossRefPubMed
30.
go back to reference Rai PS, Pai GC, Alvares JF, Bellampalli R, Gopinath PM, Satyamoorthy K. Intraindividual somatic variations in MTHFR gene polymorphisms in relation to colon cancer. Pharmacogenomics. 2014;15:349–59.CrossRefPubMed Rai PS, Pai GC, Alvares JF, Bellampalli R, Gopinath PM, Satyamoorthy K. Intraindividual somatic variations in MTHFR gene polymorphisms in relation to colon cancer. Pharmacogenomics. 2014;15:349–59.CrossRefPubMed
31.
go back to reference Zhao M, Li X, Xing C, Zhou B. Association of methylene tetrahydrofolate reductase C677T and A1298C polymorphisms with colorectal cancer risk: a meta-analysis. Biomed Rep. 2013;5:781–91. Zhao M, Li X, Xing C, Zhou B. Association of methylene tetrahydrofolate reductase C677T and A1298C polymorphisms with colorectal cancer risk: a meta-analysis. Biomed Rep. 2013;5:781–91.
32.
go back to reference Fernàndez-Peralta AM, Daimiel L, Nejda N, Iglesias D, Arana VM, Gonzàlez Aguilera JJ. Association of polymorphisms MTHFR C677T and A1298C with risk of colorectal cancer, genetic and epigenetic characteristic of tumors, and response to chemotherapy. Int Colorectal Dis. 2010;25:141–51.CrossRef Fernàndez-Peralta AM, Daimiel L, Nejda N, Iglesias D, Arana VM, Gonzàlez Aguilera JJ. Association of polymorphisms MTHFR C677T and A1298C with risk of colorectal cancer, genetic and epigenetic characteristic of tumors, and response to chemotherapy. Int Colorectal Dis. 2010;25:141–51.CrossRef
Metadata
Title
Multidisciplinary approach and anesthetic management of a surgical cancer patient with methylene tetrahydrofolate reductase deficiency: a case report and review of the literature
Authors
Marco Cascella
Manuela Arcamone
Emanuela Morelli
Daniela Viscardi
Viera Russo
Silvia De Franciscis
Andrea Belli
Rosanna Accardo
Domenico Caliendo
Elena De Luca
Barbara Di Caprio
Francesco Di Sauro
Giovanni Giannoni
Carmine Iermano
Maria Maciariello
Marcella Marracino
Arturo Cuomo
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Medical Case Reports / Issue 1/2015
Electronic ISSN: 1752-1947
DOI
https://doi.org/10.1186/s13256-015-0662-0

Other articles of this Issue 1/2015

Journal of Medical Case Reports 1/2015 Go to the issue