Skip to main content
Top
Published in: Insights into Imaging 1/2020

Open Access 01-12-2020 | Original Article

The effect of the MR pulse sequence on the regional corpus callosum morphometry

Authors: Fahad H. Alhazmi, Osama M. Abdulaal, Abdulaziz A. Qurashi, Khalid M. Aloufi, Vanessa Sluming

Published in: Insights into Imaging | Issue 1/2020

Login to get access

Abstract

Background and purposes

Brain morphometry is an important assessment technique to assess certain morphological brain features of various brain regions, which can be quantified in vivo by using high-resolution structural magnetic resonance (MR) imaging. This study aims to investigate the effect of different types of pulse sequence on regional corpus callosum (CC) morphometry analysis.

Materials and methods

Twenty-one healthy volunteers were scanned twice on the same 3T MRI scanner (Magnetom Trio, Siemens, Erlangen, Germany) equipped with an 8-channel head coil. Two different MR pulse sequences were applied to acquire high-resolution 3D T1-weighted images: magnetization-prepared rapid gradient-echo (MP-RAGE) and modified driven equilibrium Fourier transform (MDEFT) pulse sequence. Image quality measurements such as SNR, contrast-to-noise ratio, and relative contrast were calculated for each pulse sequence images independently. The values of corpus callosum volume were calculated based on the vertex of reconstructed surfaces. The paired dependent t test was applied to compare the means of two matched groups.

Results

Three sub-regional CC, namely anterior, mid-anterior, and posterior, resulted in an estimated volume difference between MDEFT and MP-RAGE pulse sequences. Central and mid-posterior sub-regional CC volume resulted in not significant difference between the two named pulse sequences.

Conclusion

The findings of this study demonstrate that combining data from different pulse sequences in a multisite study could make some variations in the results.
Literature
1.
go back to reference Alhusaini S, Kowalczyk MA, Yasuda CL et al (2019) Normal cerebral cortical thickness in first-degree relatives of temporal lobe epilepsy patients. Neurology 92:e351–e358CrossRef Alhusaini S, Kowalczyk MA, Yasuda CL et al (2019) Normal cerebral cortical thickness in first-degree relatives of temporal lobe epilepsy patients. Neurology 92:e351–e358CrossRef
2.
go back to reference Kim HJ, Ye BS, Yoon CW et al (2014) Cortical thickness and hippocampal shape in pure vascular mild cognitive impairment and dementia of subcortical type. Eur J Neurol 21:744–751CrossRef Kim HJ, Ye BS, Yoon CW et al (2014) Cortical thickness and hippocampal shape in pure vascular mild cognitive impairment and dementia of subcortical type. Eur J Neurol 21:744–751CrossRef
3.
go back to reference Schumann CM, Barnes CC, Lord C, Courchesne E (2009) Amygdala enlargement in toddlers with autism related to severity of social and communication impairments. Biol Psychiatry 66:942–949CrossRef Schumann CM, Barnes CC, Lord C, Courchesne E (2009) Amygdala enlargement in toddlers with autism related to severity of social and communication impairments. Biol Psychiatry 66:942–949CrossRef
4.
go back to reference Welch KA, Stanfield AC, Moorhead TW et al (2010) Amygdala volume in a population with special educational needs at high risk of schizophrenia. Psychol Med 40:945–954CrossRef Welch KA, Stanfield AC, Moorhead TW et al (2010) Amygdala volume in a population with special educational needs at high risk of schizophrenia. Psychol Med 40:945–954CrossRef
5.
go back to reference Castellanos FX, Lee PP, Sharp W et al (2002) Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 288:1740–1748CrossRef Castellanos FX, Lee PP, Sharp W et al (2002) Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 288:1740–1748CrossRef
6.
go back to reference Fotenos AF, Snyder AZ, Girton LE, Morris JC, Buckner RL (2005) Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 64:1032–1039CrossRef Fotenos AF, Snyder AZ, Girton LE, Morris JC, Buckner RL (2005) Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 64:1032–1039CrossRef
7.
go back to reference Yang C-Y, Liu H-M, Chen S-K, Chen Y-F, Lee C-W, Yeh L-R (2016) Reproducibility of brain morphometry from short-term repeat clinical MRI examinations: a retrospective study. PLoS One 11:–e0146913CrossRef Yang C-Y, Liu H-M, Chen S-K, Chen Y-F, Lee C-W, Yeh L-R (2016) Reproducibility of brain morphometry from short-term repeat clinical MRI examinations: a retrospective study. PLoS One 11:–e0146913CrossRef
8.
go back to reference Hampel H, Teipel SJ, Alexander GE et al (1998) Corpus callosum atrophy is a possible indicator of region- and cell type-specific neuronal degeneration in Alzheimer disease: a magnetic resonance imaging analysis. Arch Neurol 55:193–198CrossRef Hampel H, Teipel SJ, Alexander GE et al (1998) Corpus callosum atrophy is a possible indicator of region- and cell type-specific neuronal degeneration in Alzheimer disease: a magnetic resonance imaging analysis. Arch Neurol 55:193–198CrossRef
9.
go back to reference Caligiuri ME, Barone S, Cherubini A et al (2015) The relationship between regional microstructural abnormalities of the corpus callosum and physical and cognitive disability in relapsing–remitting multiple sclerosis. Neuroimage Clin 7:28–33CrossRef Caligiuri ME, Barone S, Cherubini A et al (2015) The relationship between regional microstructural abnormalities of the corpus callosum and physical and cognitive disability in relapsing–remitting multiple sclerosis. Neuroimage Clin 7:28–33CrossRef
10.
go back to reference Yaldizli Ö, Penner I-K, Frontzek K et al (2014) The relationship between total and regional corpus callosum atrophy, cognitive impairment and fatigue in multiple sclerosis patients. Mult Scler J 20:356–364CrossRef Yaldizli Ö, Penner I-K, Frontzek K et al (2014) The relationship between total and regional corpus callosum atrophy, cognitive impairment and fatigue in multiple sclerosis patients. Mult Scler J 20:356–364CrossRef
11.
go back to reference Abdul-Kareem IA, Stancak A, Parkes LM, Sluming V (2009) Regional corpus callosum morphometry: effect of field strength and pulse sequence. J Magn Reson Imaging 30:1184–1190CrossRef Abdul-Kareem IA, Stancak A, Parkes LM, Sluming V (2009) Regional corpus callosum morphometry: effect of field strength and pulse sequence. J Magn Reson Imaging 30:1184–1190CrossRef
12.
go back to reference Haller S, Falkovskiy P, Meuli R et al (2016) Basic MR sequence parameters systematically bias automated brain volume estimation. Neuroradiology 58:1153–1160CrossRef Haller S, Falkovskiy P, Meuli R et al (2016) Basic MR sequence parameters systematically bias automated brain volume estimation. Neuroradiology 58:1153–1160CrossRef
13.
go back to reference Maubon AJ, Ferru J-M, Berger V et al (1999) Effect of field strength on MR images: comparison of the same subject at 0.5, 1.0, and 1.5 T. Radiographics 19:1057–1067CrossRef Maubon AJ, Ferru J-M, Berger V et al (1999) Effect of field strength on MR images: comparison of the same subject at 0.5, 1.0, and 1.5 T. Radiographics 19:1057–1067CrossRef
14.
go back to reference Han X, Jovicich J, Salat D et al (2006) Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32:180–194CrossRef Han X, Jovicich J, Salat D et al (2006) Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32:180–194CrossRef
15.
go back to reference Rutt BK, Lee DH (1996) The impact of field strength on image quality in MRI. J Magn Reson Imaging 6:57–62CrossRef Rutt BK, Lee DH (1996) The impact of field strength on image quality in MRI. J Magn Reson Imaging 6:57–62CrossRef
16.
go back to reference Lee DH, Vellet AD, Eliasziw M et al (1995) MR imaging field strength: prospective evaluation of the diagnostic accuracy of MR for diagnosis of multiple sclerosis at 0.5 and 1.5 T. Radiology 194:257–262CrossRef Lee DH, Vellet AD, Eliasziw M et al (1995) MR imaging field strength: prospective evaluation of the diagnostic accuracy of MR for diagnosis of multiple sclerosis at 0.5 and 1.5 T. Radiology 194:257–262CrossRef
17.
go back to reference Jovicich J, Marizzoni M, Sala-llonch R et al (2013) Brain morphometry reproducibility in multi-center 3 T MRI studies: a comparison of cross-sectional and longitudinal segmentations. Neuroimage 83:472–484CrossRef Jovicich J, Marizzoni M, Sala-llonch R et al (2013) Brain morphometry reproducibility in multi-center 3 T MRI studies: a comparison of cross-sectional and longitudinal segmentations. Neuroimage 83:472–484CrossRef
18.
go back to reference Despotovic I, Goossens B, Philips W (2015) MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med 2015:450341 Despotovic I, Goossens B, Philips W (2015) MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med 2015:450341
19.
go back to reference Guenette JP, Stern RA, Tripodis Y et al (2018) Automated versus manual segmentation of brain region volumes in former football players. Neuroimage Clin 18:888–896CrossRef Guenette JP, Stern RA, Tripodis Y et al (2018) Automated versus manual segmentation of brain region volumes in former football players. Neuroimage Clin 18:888–896CrossRef
20.
go back to reference Tardif CL, Collins DL, Pike GB (2009) Sensitivity of voxel-based morphometry analysis to choice of imaging protocol at 3 T. Neuroimage 44:827–838CrossRef Tardif CL, Collins DL, Pike GB (2009) Sensitivity of voxel-based morphometry analysis to choice of imaging protocol at 3 T. Neuroimage 44:827–838CrossRef
21.
go back to reference Ugurbil K, Garwood M, Ellermann J et al (1993) Imaging at high magnetic fields: initial experiences at 4 T. Magn Reson Q 9:259–277PubMed Ugurbil K, Garwood M, Ellermann J et al (1993) Imaging at high magnetic fields: initial experiences at 4 T. Magn Reson Q 9:259–277PubMed
22.
go back to reference Highley JR, Esiri MM, Mcdonald B, Cortina-borja M, Herron BM, Crow TJ (1999) The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. Brain 122(Pt 1):99–110CrossRef Highley JR, Esiri MM, Mcdonald B, Cortina-borja M, Herron BM, Crow TJ (1999) The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. Brain 122(Pt 1):99–110CrossRef
23.
go back to reference Abdul-Kareem IA, Sluming V (2008) Heschl gyrus and its included primary auditory cortex: structural MRI studies in healthy and diseased subjects. J Magn Reson Imaging 28:287–299CrossRef Abdul-Kareem IA, Sluming V (2008) Heschl gyrus and its included primary auditory cortex: structural MRI studies in healthy and diseased subjects. J Magn Reson Imaging 28:287–299CrossRef
24.
go back to reference Aldhafeeri FM, Alghamdi J, Sluming V, Mackenzie I, Kay T (2012) Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging. Neuroradiology 54:883–892CrossRef Aldhafeeri FM, Alghamdi J, Sluming V, Mackenzie I, Kay T (2012) Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging. Neuroradiology 54:883–892CrossRef
25.
go back to reference FIschl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050–11055CrossRef FIschl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050–11055CrossRef
26.
go back to reference Mugler JP 3rd, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15:152–157CrossRef Mugler JP 3rd, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15:152–157CrossRef
27.
go back to reference Mugler JP 3rd, Brookeman JR (1991) Rapid three-dimensional T1-weighted MR imaging with the MP-RAGE sequence. J Magn Reson Imaging 1:561–567CrossRef Mugler JP 3rd, Brookeman JR (1991) Rapid three-dimensional T1-weighted MR imaging with the MP-RAGE sequence. J Magn Reson Imaging 1:561–567CrossRef
28.
go back to reference Wang J, He L, Zheng H, Lu ZL (2014) Optimizing the magnetization-prepared rapid gradient-echo (MP-RAGE) sequence. PLoS One, 9, e96899.CrossRef Wang J, He L, Zheng H, Lu ZL (2014) Optimizing the magnetization-prepared rapid gradient-echo (MP-RAGE) sequence. PLoS One, 9, e96899.CrossRef
29.
go back to reference Deichmann R, Schwarzbauer C, Turner R (2004) Optimisation of the 3D MDEFT sequence for anatomical brain imaging: technical implications at 1.5 and 3 T. Neuroimage 21:757–767CrossRef Deichmann R, Schwarzbauer C, Turner R (2004) Optimisation of the 3D MDEFT sequence for anatomical brain imaging: technical implications at 1.5 and 3 T. Neuroimage 21:757–767CrossRef
30.
go back to reference Thomas DL, De vita E, Deichmann R, Turner R, Ordidge RJ (2005) 3D MDEFT imaging of the human brain at 4.7 T with reduced sensitivity to radiofrequency inhomogeneity. Magn Reson Med 53:1452–1458CrossRef Thomas DL, De vita E, Deichmann R, Turner R, Ordidge RJ (2005) 3D MDEFT imaging of the human brain at 4.7 T with reduced sensitivity to radiofrequency inhomogeneity. Magn Reson Med 53:1452–1458CrossRef
31.
go back to reference Gispert JD, Reig S, Pascau J, Vaquero JJ, Garcia-barreno P, Desco M (2004) Method for bias field correction of brain T1-weighted magnetic resonance images minimizing segmentation error. Hum Brain Mapp 22:133–144CrossRef Gispert JD, Reig S, Pascau J, Vaquero JJ, Garcia-barreno P, Desco M (2004) Method for bias field correction of brain T1-weighted magnetic resonance images minimizing segmentation error. Hum Brain Mapp 22:133–144CrossRef
32.
go back to reference Juntu J, Sijbers J, Van Dyck D, Gielen J (2005) Bias Field Correction for MRI Images. In: Kurzyński M, Puchała E, Woźniak M, żołnierek A (eds) Computer Recognition Systems. Advances in Soft Computing, vol 30. Springer, Berlin, Heidelberg Juntu J, Sijbers J, Van Dyck D, Gielen J (2005) Bias Field Correction for MRI Images. In: Kurzyński M, Puchała E, Woźniak M, żołnierek A (eds) Computer Recognition Systems. Advances in Soft Computing, vol 30. Springer, Berlin, Heidelberg
33.
go back to reference Fellner F, Holl K, Held P, Fellner C, Schmitt R, Bohm-jurkovic H (1996) A T1-weighted rapid three-dimensional gradient-echo technique (MP-RAGE) in preoperative MRI of intracranial tumours. Neuroradiology 38:199–206CrossRef Fellner F, Holl K, Held P, Fellner C, Schmitt R, Bohm-jurkovic H (1996) A T1-weighted rapid three-dimensional gradient-echo technique (MP-RAGE) in preoperative MRI of intracranial tumours. Neuroradiology 38:199–206CrossRef
Metadata
Title
The effect of the MR pulse sequence on the regional corpus callosum morphometry
Authors
Fahad H. Alhazmi
Osama M. Abdulaal
Abdulaziz A. Qurashi
Khalid M. Aloufi
Vanessa Sluming
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
Insights into Imaging / Issue 1/2020
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-019-0821-8

Other articles of this Issue 1/2020

Insights into Imaging 1/2020 Go to the issue