Skip to main content
Top
Published in: Insights into Imaging 1/2019

Open Access 01-12-2019 | Positron Emission Tomography | Review

How clinical imaging can assess cancer biology

Authors: Roberto García-Figueiras, Sandra Baleato-González, Anwar R. Padhani, Antonio Luna-Alcalá, Juan Antonio Vallejo-Casas, Evis Sala, Joan C. Vilanova, Dow-Mu Koh, Michel Herranz-Carnero, Herbert Alberto Vargas

Published in: Insights into Imaging | Issue 1/2019

Login to get access

Abstract

Human cancers represent complex structures, which display substantial inter- and intratumor heterogeneity in their genetic expression and phenotypic features. However, cancers usually exhibit characteristic structural, physiologic, and molecular features and display specific biological capabilities named hallmarks. Many of these tumor traits are imageable through different imaging techniques. Imaging is able to spatially map key cancer features and tumor heterogeneity improving tumor diagnosis, characterization, and management. This paper aims to summarize the current and emerging applications of imaging in tumor biology assessment.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference O'Neill AC, Alessandrino F, Tirumani SH, Ramaiya NH (2018) Hallmarks of Cancer in the Reading Room: A Guide for Radiologists. AJR Am J Roentgenol 11:1–15 O'Neill AC, Alessandrino F, Tirumani SH, Ramaiya NH (2018) Hallmarks of Cancer in the Reading Room: A Guide for Radiologists. AJR Am J Roentgenol 11:1–15
3.
go back to reference Sala E, Mema E, Himoto Y et al (2017) Unravelling tumor heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol 72:3–10PubMedCrossRef Sala E, Mema E, Himoto Y et al (2017) Unravelling tumor heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol 72:3–10PubMedCrossRef
4.
go back to reference Hricak H (2018) 2016 New Horizons Lecture: Beyond Imaging-Radiology of Tomorrow. Radiology 286:764–775PubMedCrossRef Hricak H (2018) 2016 New Horizons Lecture: Beyond Imaging-Radiology of Tomorrow. Radiology 286:764–775PubMedCrossRef
5.
go back to reference Winfield JM, Payne GS, deSouza NM (2015) Functional MRI and CT biomarkers in oncology. Eur J Nucl Med Mol Imaging 42:562–578PubMedCrossRef Winfield JM, Payne GS, deSouza NM (2015) Functional MRI and CT biomarkers in oncology. Eur J Nucl Med Mol Imaging 42:562–578PubMedCrossRef
6.
go back to reference Gillies RJ, Anderson AR, Gatenby RA, Morse DL (2010) The biology underlying molecular imaging in oncology: from genome to anatome and back again. Clin Radiol 65:517–521PubMedPubMedCentralCrossRef Gillies RJ, Anderson AR, Gatenby RA, Morse DL (2010) The biology underlying molecular imaging in oncology: from genome to anatome and back again. Clin Radiol 65:517–521PubMedPubMedCentralCrossRef
7.
go back to reference Spak DA, Plaxco JS, Santiago L, Dryden MJ, Dogan BE (2017) BI-RADS® fifth edition: A summary of changes. Diagn Interv Imaging 98:179–190PubMedCrossRef Spak DA, Plaxco JS, Santiago L, Dryden MJ, Dogan BE (2017) BI-RADS® fifth edition: A summary of changes. Diagn Interv Imaging 98:179–190PubMedCrossRef
9.
go back to reference Manos D, Seely JM, Taylor J, Borgaonkar J, Roberts HC, Mayo JR (2014) The Lung Reporting and Data System (LU-RADS): a proposal for computed tomography screening. Can Assoc Radiol J 65:121–134PubMedCrossRef Manos D, Seely JM, Taylor J, Borgaonkar J, Roberts HC, Mayo JR (2014) The Lung Reporting and Data System (LU-RADS): a proposal for computed tomography screening. Can Assoc Radiol J 65:121–134PubMedCrossRef
10.
go back to reference Tessler FN, Middleton WD, Grant EG (2018) Thyroid Imaging Reporting and Data System (TI-RADS): A User's Guide. Radiology 287:29–36PubMedCrossRef Tessler FN, Middleton WD, Grant EG (2018) Thyroid Imaging Reporting and Data System (TI-RADS): A User's Guide. Radiology 287:29–36PubMedCrossRef
12.
go back to reference Karlo CA, Di Paolo PL, Chaim J et al (2014) Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology 270:464–471PubMedCrossRef Karlo CA, Di Paolo PL, Chaim J et al (2014) Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology 270:464–471PubMedCrossRef
13.
go back to reference Zhang Q, Eagleson R, Peters TM (2011) Volume visualization: a technical overview with a focus on medical applications. J Digit Imaging 24:640–664PubMedCrossRef Zhang Q, Eagleson R, Peters TM (2011) Volume visualization: a technical overview with a focus on medical applications. J Digit Imaging 24:640–664PubMedCrossRef
15.
go back to reference Nielsen K, Rolff HC, Eefsen RL, Vainer B (2014) The morphological growth patterns of colorectal liver metastases are prognostic for overall survival. Mod Pathol 27:1641–1648PubMedCrossRef Nielsen K, Rolff HC, Eefsen RL, Vainer B (2014) The morphological growth patterns of colorectal liver metastases are prognostic for overall survival. Mod Pathol 27:1641–1648PubMedCrossRef
16.
go back to reference Anvari A, Barr RG, Dhyani M, Samir AE (2015) Clinical application of sonoelastography in thyroid, prostate, kidney, pancreas, and deep venous thrombosis. Abdom Imaging 40:709–722PubMedCrossRef Anvari A, Barr RG, Dhyani M, Samir AE (2015) Clinical application of sonoelastography in thyroid, prostate, kidney, pancreas, and deep venous thrombosis. Abdom Imaging 40:709–722PubMedCrossRef
17.
go back to reference Pepin KM, Ehman RL, McGee KP (2015) Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications. Prog Nucl Magn Reson Spectrosc 90-91:32–48PubMedCrossRef Pepin KM, Ehman RL, McGee KP (2015) Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications. Prog Nucl Magn Reson Spectrosc 90-91:32–48PubMedCrossRef
18.
go back to reference Le Bihan D, Ichikawa S, Motosugi U (2017) Diffusion and Intravoxel Incoherent Motion MR Imaging-based Virtual Elastography: A Hypothesis-generating Study in the Liver. Radiology 285:609–619PubMedCrossRef Le Bihan D, Ichikawa S, Motosugi U (2017) Diffusion and Intravoxel Incoherent Motion MR Imaging-based Virtual Elastography: A Hypothesis-generating Study in the Liver. Radiology 285:609–619PubMedCrossRef
19.
go back to reference Cui XW, Chang JM, Kan QC, Chiorean L, Ignee A, Dietrich CF (2015) Endoscopic ultrasound elastography: Current status and future perspectives. World J Gastroenterol 21:13212–13224PubMedPubMedCentralCrossRef Cui XW, Chang JM, Kan QC, Chiorean L, Ignee A, Dietrich CF (2015) Endoscopic ultrasound elastography: Current status and future perspectives. World J Gastroenterol 21:13212–13224PubMedPubMedCentralCrossRef
20.
go back to reference Xu W, Shi J, Zeng X et al (2011) EUS elastography for the differentiation of benign and malignant lymph nodes: a meta-analysis. Gastrointest Endosc 74:1001–1009PubMedCrossRef Xu W, Shi J, Zeng X et al (2011) EUS elastography for the differentiation of benign and malignant lymph nodes: a meta-analysis. Gastrointest Endosc 74:1001–1009PubMedCrossRef
21.
go back to reference Le Bihan D (2013) Apparent Diffusion Coefficient and Beyond: What Diffusion MR Imaging Can Tell Us about Tissue Structure. Radiology 268:318–322PubMedCrossRef Le Bihan D (2013) Apparent Diffusion Coefficient and Beyond: What Diffusion MR Imaging Can Tell Us about Tissue Structure. Radiology 268:318–322PubMedCrossRef
22.
go back to reference Perez-Lopez R, Nava Rodrigues D, Figueiredo I et al (2018) Multiparametric Magnetic Resonance Imaging of Prostate Cancer Bone Disease: Correlation With Bone Biopsy Histological and Molecular Features. Invest Radiol 53:96–102PubMedPubMedCentralCrossRef Perez-Lopez R, Nava Rodrigues D, Figueiredo I et al (2018) Multiparametric Magnetic Resonance Imaging of Prostate Cancer Bone Disease: Correlation With Bone Biopsy Histological and Molecular Features. Invest Radiol 53:96–102PubMedPubMedCentralCrossRef
24.
go back to reference Bailey C, Collins DJ, Tunariu N et al (2018) Microstructure Characterization of Bone Metastases from Prostate Cancer with Diffusion MRI: Preliminary Findings. Front Oncol 8:26PubMedPubMedCentralCrossRef Bailey C, Collins DJ, Tunariu N et al (2018) Microstructure Characterization of Bone Metastases from Prostate Cancer with Diffusion MRI: Preliminary Findings. Front Oncol 8:26PubMedPubMedCentralCrossRef
25.
go back to reference Panagiotaki E, Walker-Samuel S, Siow B et al (2014) Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res 74:1902–1912PubMedCrossRef Panagiotaki E, Walker-Samuel S, Siow B et al (2014) Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res 74:1902–1912PubMedCrossRef
27.
go back to reference Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635PubMedCrossRef Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635PubMedCrossRef
28.
go back to reference Patterson DM, Padhani AR, Collins DJ (2008) Technology insight: water diffusion MRI-a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol 5:220–233PubMedCrossRef Patterson DM, Padhani AR, Collins DJ (2008) Technology insight: water diffusion MRI-a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol 5:220–233PubMedCrossRef
29.
go back to reference Taouli B, Beer AJ, Chenevert T et al (2016) Diffusion-Weighted Imaging Outside the Brain: Consensus Statement From an ISMRM-Sponsored Workshop. J Magn Reson Imaging 44:521–540PubMedPubMedCentralCrossRef Taouli B, Beer AJ, Chenevert T et al (2016) Diffusion-Weighted Imaging Outside the Brain: Consensus Statement From an ISMRM-Sponsored Workshop. J Magn Reson Imaging 44:521–540PubMedPubMedCentralCrossRef
30.
go back to reference Malayeri AA, El Khouli RH, Zaheer A et al (2011) Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics 31:1773–1791PubMedCrossRef Malayeri AA, El Khouli RH, Zaheer A et al (2011) Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics 31:1773–1791PubMedCrossRef
31.
go back to reference Taffel MT, Johnson EJ, Chandarana H (2017) Diffusion Quantification in Body Imaging. Top Magn Reson Imaging 26:243–249PubMedCrossRef Taffel MT, Johnson EJ, Chandarana H (2017) Diffusion Quantification in Body Imaging. Top Magn Reson Imaging 26:243–249PubMedCrossRef
32.
go back to reference Surov A, Meyer HJ, Wienke A (2017) Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget 8:59492–59499PubMedPubMedCentral Surov A, Meyer HJ, Wienke A (2017) Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget 8:59492–59499PubMedPubMedCentral
33.
go back to reference Surov A, Meyer HJ, Wienke A (2017) Correlation Between Minimum Apparent Diffusion Coefficient (ADCmin) and Tumor Cellularity: A Meta-analysis. Anticancer Res 37:3807–3810PubMed Surov A, Meyer HJ, Wienke A (2017) Correlation Between Minimum Apparent Diffusion Coefficient (ADCmin) and Tumor Cellularity: A Meta-analysis. Anticancer Res 37:3807–3810PubMed
35.
go back to reference Iima M, Le Bihan D (2016) Clinical Intravoxel Incoherent Motion and Diffusion MR Imaging: Past, Present, and Future. Radiology 278:13–32PubMedCrossRef Iima M, Le Bihan D (2016) Clinical Intravoxel Incoherent Motion and Diffusion MR Imaging: Past, Present, and Future. Radiology 278:13–32PubMedCrossRef
37.
go back to reference Rosenkrantz AB, Padhani AR, Chenevert TL et al (2015) Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging 42:1190–1202PubMedCrossRef Rosenkrantz AB, Padhani AR, Chenevert TL et al (2015) Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging 42:1190–1202PubMedCrossRef
38.
go back to reference Godley KC, Syer TJ, Toms AP et al (2018) Accuracy of high b-value diffusion-weighted MRI for prostate cancer detection: a meta-analysis. Acta Radiol 59(1):105–113PubMedCrossRef Godley KC, Syer TJ, Toms AP et al (2018) Accuracy of high b-value diffusion-weighted MRI for prostate cancer detection: a meta-analysis. Acta Radiol 59(1):105–113PubMedCrossRef
39.
go back to reference Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 1:102–125CrossRef Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 1:102–125CrossRef
40.
go back to reference Padhani AR (2011) Diffusion magnetic resonance imaging in cancer patient management. Semin Radiat Oncol 21:119–140PubMedCrossRef Padhani AR (2011) Diffusion magnetic resonance imaging in cancer patient management. Semin Radiat Oncol 21:119–140PubMedCrossRef
41.
go back to reference Padhani AR, Koh DM, Collins DJ (2011) Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology 261:700–718PubMedCrossRef Padhani AR, Koh DM, Collins DJ (2011) Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology 261:700–718PubMedCrossRef
42.
go back to reference Winfield JM, Payne GS, Weller A, deSouza NM (2016) DCE-MRI, DW-MRI, and MRS in Cancer: Challenges and Advantages of Implementing Qualitative and Quantitative Multi-parametric Imaging in the Clinic. Top Magn Reson Imaging 25:245–254PubMedPubMedCentralCrossRef Winfield JM, Payne GS, Weller A, deSouza NM (2016) DCE-MRI, DW-MRI, and MRS in Cancer: Challenges and Advantages of Implementing Qualitative and Quantitative Multi-parametric Imaging in the Clinic. Top Magn Reson Imaging 25:245–254PubMedPubMedCentralCrossRef
43.
go back to reference García-Figueiras R, Padhani AR, Baleato-González S (2016) Therapy Monitoring with Functional and Molecular MR Imaging. Magn Reson Imaging Clin N Am 24:261–288PubMedCrossRef García-Figueiras R, Padhani AR, Baleato-González S (2016) Therapy Monitoring with Functional and Molecular MR Imaging. Magn Reson Imaging Clin N Am 24:261–288PubMedCrossRef
44.
go back to reference Li SP, Padhani AR (2012) Tumor response assessments with diffusion and perfusion MRI. J Magn Reson Imaging 35:745–763PubMedCrossRef Li SP, Padhani AR (2012) Tumor response assessments with diffusion and perfusion MRI. J Magn Reson Imaging 35:745–763PubMedCrossRef
45.
go back to reference Li B, Li Q, Nie W, Liu S (2014) Diagnostic value of whole-body diffusion-weighted magnetic resonance imaging for detection of primary and metastatic malignancies: a meta-analysis. Eur J Radiol 83:338–344PubMedCrossRef Li B, Li Q, Nie W, Liu S (2014) Diagnostic value of whole-body diffusion-weighted magnetic resonance imaging for detection of primary and metastatic malignancies: a meta-analysis. Eur J Radiol 83:338–344PubMedCrossRef
46.
go back to reference Kosmin M, Makris A, Joshi PV, Ah-See ML, Woolf D, Padhani AR (2017) The addition of whole-body magnetic resonance imaging to body computerised tomography changes treatment decisions in patients with metastatic breast cancer. Eur J Cancer 77:109–116PubMedCrossRef Kosmin M, Makris A, Joshi PV, Ah-See ML, Woolf D, Padhani AR (2017) The addition of whole-body magnetic resonance imaging to body computerised tomography changes treatment decisions in patients with metastatic breast cancer. Eur J Cancer 77:109–116PubMedCrossRef
47.
go back to reference Morone M, Bali MA, Tunariu N et al (2017) Whole-Body MRI: Current Applications in Oncology. AJR Am J Roentgenol 209:W336–W349PubMedCrossRef Morone M, Bali MA, Tunariu N et al (2017) Whole-Body MRI: Current Applications in Oncology. AJR Am J Roentgenol 209:W336–W349PubMedCrossRef
48.
go back to reference Nievelstein RA, Littooij AS (2017) Whole-body MRI in paediatric oncology. Radiol Med 121:442–453CrossRef Nievelstein RA, Littooij AS (2017) Whole-body MRI in paediatric oncology. Radiol Med 121:442–453CrossRef
49.
go back to reference Koh DM, Blackledge M, Padhani AR et al (2012) Whole-body diffusion-weighted MRI: tips, tricks, and pitfalls. AJR Am J Roentgenol 199:252–262PubMedCrossRef Koh DM, Blackledge M, Padhani AR et al (2012) Whole-body diffusion-weighted MRI: tips, tricks, and pitfalls. AJR Am J Roentgenol 199:252–262PubMedCrossRef
50.
51.
go back to reference Barnes A, Alonzi R, Blackledge M et al (2018) UK quantitative WB-DWI technical workgroup: consensus meeting recommendations on optimisation, quality control, processing and analysis of quantitative whole-body diffusion-weighted imaging for cancer. Br J Radiol 91(1081):20170577. https://doi.org/10.1259/bjr.20170577 Epub 2017 Dec 7CrossRefPubMed Barnes A, Alonzi R, Blackledge M et al (2018) UK quantitative WB-DWI technical workgroup: consensus meeting recommendations on optimisation, quality control, processing and analysis of quantitative whole-body diffusion-weighted imaging for cancer. Br J Radiol 91(1081):20170577. https://​doi.​org/​10.​1259/​bjr.​20170577 Epub 2017 Dec 7CrossRefPubMed
52.
go back to reference deSouza NM, Winfield JM, Waterton JC et al (2018) Implementing diffusion-weighted MRI for body imaging in prospective multicentre trials: current considerations and future perspectives. Eur Radiol 28:1118–1131PubMedCrossRef deSouza NM, Winfield JM, Waterton JC et al (2018) Implementing diffusion-weighted MRI for body imaging in prospective multicentre trials: current considerations and future perspectives. Eur Radiol 28:1118–1131PubMedCrossRef
53.
go back to reference Padhani AR, Makris A, Gall P, Collins DJ, Tunariu N, de Bono JS (2014) Therapy monitoring of skeletal metastases with whole-body diffusion MRI. J Magn Reson Imaging 39:1049–1078PubMedCrossRef Padhani AR, Makris A, Gall P, Collins DJ, Tunariu N, de Bono JS (2014) Therapy monitoring of skeletal metastases with whole-body diffusion MRI. J Magn Reson Imaging 39:1049–1078PubMedCrossRef
54.
go back to reference Padhani AR, Lecouvet FE, Tunariu N et al (2017) METastasis Reporting and Data System for Prostate Cancer: Practical Guidelines for Acquisition, Interpretation, and Reporting of Whole-body Magnetic Resonance Imaging-based Evaluations of Multiorgan Involvement in Advanced Prostate Cancer. Eur Urol 71:81–92PubMedPubMedCentralCrossRef Padhani AR, Lecouvet FE, Tunariu N et al (2017) METastasis Reporting and Data System for Prostate Cancer: Practical Guidelines for Acquisition, Interpretation, and Reporting of Whole-body Magnetic Resonance Imaging-based Evaluations of Multiorgan Involvement in Advanced Prostate Cancer. Eur Urol 71:81–92PubMedPubMedCentralCrossRef
55.
go back to reference Koh DM, Collins DJ, Orton MR (2011) Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 196:1351–1361PubMedCrossRef Koh DM, Collins DJ, Orton MR (2011) Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 196:1351–1361PubMedCrossRef
56.
go back to reference Karampinos DC, Ruschke S, Dieckmeyer M et al (2018) Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging 47:332–353PubMedCrossRef Karampinos DC, Ruschke S, Dieckmeyer M et al (2018) Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging 47:332–353PubMedCrossRef
57.
go back to reference Schraml C, Schmid M, Gatidis S et al (2015) Multiparametric analysis of bone marrow in cancer patients using simultaneous PET/MR imaging: Correlation of fat fraction, diffusivity, metabolic activity, and anthropometric data. J Magn Reson Imaging 42:1048–1056PubMedCrossRef Schraml C, Schmid M, Gatidis S et al (2015) Multiparametric analysis of bone marrow in cancer patients using simultaneous PET/MR imaging: Correlation of fat fraction, diffusivity, metabolic activity, and anthropometric data. J Magn Reson Imaging 42:1048–1056PubMedCrossRef
58.
go back to reference Carmona R, Pritz J, Bydder M et al (2014) Fat composition changes in bone marrow during chemotherapy and radiation therapy. Int J Radiat Oncol Biol Phys 90:155–163PubMedPubMedCentralCrossRef Carmona R, Pritz J, Bydder M et al (2014) Fat composition changes in bone marrow during chemotherapy and radiation therapy. Int J Radiat Oncol Biol Phys 90:155–163PubMedPubMedCentralCrossRef
59.
go back to reference McSheehy PM, Weidensteiner C, Cannet C et al (2010) Quantified tumor T1 is a generic early-response imaging biomarker for chemotherapy reflecting cell viability. Clin Cancer Res 16:212–225PubMedCrossRef McSheehy PM, Weidensteiner C, Cannet C et al (2010) Quantified tumor T1 is a generic early-response imaging biomarker for chemotherapy reflecting cell viability. Clin Cancer Res 16:212–225PubMedCrossRef
60.
go back to reference Adams LC, Ralla B, Jurmeister P et al (2019) Native T1 Mapping as an In Vivo Biomarker for the Identification of Higher-Grade Renal Cell Carcinoma: Correlation With Histopathological Findings. Invest Radiol 54:118–128PubMedCrossRef Adams LC, Ralla B, Jurmeister P et al (2019) Native T1 Mapping as an In Vivo Biomarker for the Identification of Higher-Grade Renal Cell Carcinoma: Correlation With Histopathological Findings. Invest Radiol 54:118–128PubMedCrossRef
61.
go back to reference Weidensteiner C, Allegrini PR, Sticker-Jantscheff M, Romanet V, Ferretti S, McSheehy PM (2014) Tumor T1 changes in vivo are highly predictive of response to chemotherapy and reflect the number of viable tumor cells--a preclinical MR study in mice. BMC Cancer 14:88PubMedPubMedCentralCrossRef Weidensteiner C, Allegrini PR, Sticker-Jantscheff M, Romanet V, Ferretti S, McSheehy PM (2014) Tumor T1 changes in vivo are highly predictive of response to chemotherapy and reflect the number of viable tumor cells--a preclinical MR study in mice. BMC Cancer 14:88PubMedPubMedCentralCrossRef
62.
go back to reference Sabouri S, Chang SD, Savdie R et al (2017) Luminal Water Imaging: A New MR Imaging T2 Mapping Technique for Prostate Cancer Diagnosis. Radiology 284:451–459PubMedPubMedCentralCrossRef Sabouri S, Chang SD, Savdie R et al (2017) Luminal Water Imaging: A New MR Imaging T2 Mapping Technique for Prostate Cancer Diagnosis. Radiology 284:451–459PubMedPubMedCentralCrossRef
63.
go back to reference Langer DL, van der Kwast TH, Evans AJ et al (2008) Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2--sparse versus dense cancers. Radiology 249:900–908PubMedCrossRef Langer DL, van der Kwast TH, Evans AJ et al (2008) Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2--sparse versus dense cancers. Radiology 249:900–908PubMedCrossRef
64.
go back to reference Wu LM, Zhao ZZ, Chen XX et al (2016) Comparison of T2* mapping with diffusion-weighted imaging in the characterization of low-grade vs intermediate-grade and high-grade prostate cancer. Br J Radiol 89:20151076PubMedPubMedCentralCrossRef Wu LM, Zhao ZZ, Chen XX et al (2016) Comparison of T2* mapping with diffusion-weighted imaging in the characterization of low-grade vs intermediate-grade and high-grade prostate cancer. Br J Radiol 89:20151076PubMedPubMedCentralCrossRef
65.
go back to reference Seo M, Ryu JK, Jahng GH et al (2017) Estimation of T2* Relaxation Time of Breast Cancer: Correlation with Clinical, Imaging and Pathological Features. Korean J Radiol 18:238–248PubMedPubMedCentralCrossRef Seo M, Ryu JK, Jahng GH et al (2017) Estimation of T2* Relaxation Time of Breast Cancer: Correlation with Clinical, Imaging and Pathological Features. Korean J Radiol 18:238–248PubMedPubMedCentralCrossRef
66.
go back to reference Martens MH, Lambregts DM, Papanikolaou N et al (2016) Magnetization transfer imaging to assess tumor response after chemoradiotherapy in rectal cancer. Eur Radiol 26:390–397PubMedCrossRef Martens MH, Lambregts DM, Papanikolaou N et al (2016) Magnetization transfer imaging to assess tumor response after chemoradiotherapy in rectal cancer. Eur Radiol 26:390–397PubMedCrossRef
68.
go back to reference Jones KM, Pollard AC, Pagel MD (2018) Clinical applications of chemical exchange saturation transfer (CEST) MRI. J Magn Reson Imaging 47:11–27PubMedCrossRef Jones KM, Pollard AC, Pagel MD (2018) Clinical applications of chemical exchange saturation transfer (CEST) MRI. J Magn Reson Imaging 47:11–27PubMedCrossRef
69.
go back to reference Paul J, Vogl TJ, Mbalisike EC (2014) Oncological applications of dual-energy computed tomography imaging. J Comput Assist Tomogr 38:834–842PubMedCrossRef Paul J, Vogl TJ, Mbalisike EC (2014) Oncological applications of dual-energy computed tomography imaging. J Comput Assist Tomogr 38:834–842PubMedCrossRef
70.
go back to reference Kosmala A, Weng AM, Heidemeier A et al (2018) Multiple Myeloma and Dual-Energy CT: Diagnostic Accuracy of Virtual Noncalcium Technique for Detection of Bone Marrow Infiltration of the Spine and Pelvis. Radiology 286:205–213PubMedCrossRef Kosmala A, Weng AM, Heidemeier A et al (2018) Multiple Myeloma and Dual-Energy CT: Diagnostic Accuracy of Virtual Noncalcium Technique for Detection of Bone Marrow Infiltration of the Spine and Pelvis. Radiology 286:205–213PubMedCrossRef
73.
go back to reference Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM (2002) MRI of the tumor microenvironment. J Magn Reson Imaging 16:430–450PubMedCrossRef Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM (2002) MRI of the tumor microenvironment. J Magn Reson Imaging 16:430–450PubMedCrossRef
74.
go back to reference Aarntzen EH, Srinivas M, Radu CG et al (2013) In vivo imaging of therapy-induced anti-cancer immune responses in humans. Cell Mol Life Sci 70:2237–2257PubMedCrossRef Aarntzen EH, Srinivas M, Radu CG et al (2013) In vivo imaging of therapy-induced anti-cancer immune responses in humans. Cell Mol Life Sci 70:2237–2257PubMedCrossRef
75.
go back to reference Fleming IN, Manavaki R, Blower PJ et al (2015) Imaging tumor hypoxia with positron emission tomography. Br J Cancer 112:238–250PubMedCrossRef Fleming IN, Manavaki R, Blower PJ et al (2015) Imaging tumor hypoxia with positron emission tomography. Br J Cancer 112:238–250PubMedCrossRef
76.
go back to reference Hallac RR, Zhou H, Pidikiti R et al (2014) Correlations of noninvasive BOLD and TOLD MRI with pO2 and relevance to tumor radiation response. Magn Reson Med 71:1863–1673PubMedCrossRef Hallac RR, Zhou H, Pidikiti R et al (2014) Correlations of noninvasive BOLD and TOLD MRI with pO2 and relevance to tumor radiation response. Magn Reson Med 71:1863–1673PubMedCrossRef
77.
go back to reference Padhani AR, Krohn KA, Lewis JS, Alber M (2007) Imaging oxygenation of human tumors. Eur Radiol 17:861–872PubMedCrossRef Padhani AR, Krohn KA, Lewis JS, Alber M (2007) Imaging oxygenation of human tumors. Eur Radiol 17:861–872PubMedCrossRef
78.
79.
go back to reference Hoskin PJ, Carnell DM, Taylor NJ et al (2007) Hypoxia in prostate cancer: correlation of BOLD-MRI with pimonidazole immunohistochemistry—initial observations. Int J Radiat Oncol Biol Phys 68:1065–1071PubMedCrossRef Hoskin PJ, Carnell DM, Taylor NJ et al (2007) Hypoxia in prostate cancer: correlation of BOLD-MRI with pimonidazole immunohistochemistry—initial observations. Int J Radiat Oncol Biol Phys 68:1065–1071PubMedCrossRef
80.
go back to reference White DA, Zhang Z, Li L et al (2016) Developing oxygen-enhanced magnetic resonance imaging as a prognostic biomarker of radiation response. Cancer Lett 380:69–77PubMedPubMedCentralCrossRef White DA, Zhang Z, Li L et al (2016) Developing oxygen-enhanced magnetic resonance imaging as a prognostic biomarker of radiation response. Cancer Lett 380:69–77PubMedPubMedCentralCrossRef
81.
go back to reference Gillies RJ, Raghunand N, Garcia-Martin ML, Gatenby RA (2004) pH imaging. A review of pH measurement methods and applications in cancers. IEEE Eng Med Biol Mag 23:57–64PubMedCrossRef Gillies RJ, Raghunand N, Garcia-Martin ML, Gatenby RA (2004) pH imaging. A review of pH measurement methods and applications in cancers. IEEE Eng Med Biol Mag 23:57–64PubMedCrossRef
82.
go back to reference Lin G, Keshari KR, Park JM (2017) Cancer Metabolism and Tumor Heterogeneity: Imaging Perspectives Using MR Imaging and Spectroscopy. Contrast Media Mol Imaging 2017:6053879PubMedPubMedCentralCrossRef Lin G, Keshari KR, Park JM (2017) Cancer Metabolism and Tumor Heterogeneity: Imaging Perspectives Using MR Imaging and Spectroscopy. Contrast Media Mol Imaging 2017:6053879PubMedPubMedCentralCrossRef
85.
go back to reference Deroose CM, Hindié E, Kebebew E et al (2016) Molecular Imaging of Gastroenteropancreatic Neuroendocrine Tumors: Current Status and Future Directions. J Nucl Med 57:1949–1956PubMedCrossRef Deroose CM, Hindié E, Kebebew E et al (2016) Molecular Imaging of Gastroenteropancreatic Neuroendocrine Tumors: Current Status and Future Directions. J Nucl Med 57:1949–1956PubMedCrossRef
86.
go back to reference Pereira PMR, Abma L, Henry KE, Lewis JS (2018) Imaging of human epidermal growth factor receptors for patient selection and response monitoring - From PET imaging and beyond. Cancer Lett 419:139–151PubMedCrossRef Pereira PMR, Abma L, Henry KE, Lewis JS (2018) Imaging of human epidermal growth factor receptors for patient selection and response monitoring - From PET imaging and beyond. Cancer Lett 419:139–151PubMedCrossRef
87.
go back to reference Rischpler C, Beck TI, Okamoto S et al (2018) 68Ga-PSMA-HBED-CC Uptake in Cervical, Celiac, and Sacral Ganglia as an Important Pitfall in Prostate Cancer PET Imaging. J Nucl Med 59:1406–1411PubMedCrossRef Rischpler C, Beck TI, Okamoto S et al (2018) 68Ga-PSMA-HBED-CC Uptake in Cervical, Celiac, and Sacral Ganglia as an Important Pitfall in Prostate Cancer PET Imaging. J Nucl Med 59:1406–1411PubMedCrossRef
88.
go back to reference Eiber M, Fendler WP, Rowe SP et al (2017) Prostate-Specific Membrane Antigen Ligands for Imaging and Therapy. J Nucl Med 58:67S–76SPubMedCrossRef Eiber M, Fendler WP, Rowe SP et al (2017) Prostate-Specific Membrane Antigen Ligands for Imaging and Therapy. J Nucl Med 58:67S–76SPubMedCrossRef
89.
go back to reference Walenkamp AME, Lapa C, Herrmann K, Wester HJ (2017) CXCR4 Ligands: The Next Big Hit? J Nucl Med 58:77S–82SPubMedCrossRef Walenkamp AME, Lapa C, Herrmann K, Wester HJ (2017) CXCR4 Ligands: The Next Big Hit? J Nucl Med 58:77S–82SPubMedCrossRef
90.
go back to reference Vander Heiden MG, DeBerardinis RJ (2017) Understanding the Intersections between Metabolism and Cancer Biology. Cell 168:657–669PubMedCrossRef Vander Heiden MG, DeBerardinis RJ (2017) Understanding the Intersections between Metabolism and Cancer Biology. Cell 168:657–669PubMedCrossRef
91.
go back to reference Sai KKS, Zachar Z, Bingham PM, Mintz A (2017) Metabolic PET Imaging in Oncology. AJR Am J Roentgenol 209:270–276PubMedCrossRef Sai KKS, Zachar Z, Bingham PM, Mintz A (2017) Metabolic PET Imaging in Oncology. AJR Am J Roentgenol 209:270–276PubMedCrossRef
92.
go back to reference Challapalli A, Aboagye EO (2016) Positron Emission Tomography Imaging of Tumor Cell Metabolism and Application to Therapy Response Monitoring. Front Oncol 6:44PubMedPubMedCentralCrossRef Challapalli A, Aboagye EO (2016) Positron Emission Tomography Imaging of Tumor Cell Metabolism and Application to Therapy Response Monitoring. Front Oncol 6:44PubMedPubMedCentralCrossRef
94.
95.
go back to reference Rauscher I, Eiber M, Souvatzoglou M, Schwaiger M, Beer AJ (2014) PET/MR in Oncology: Non-18F-FDG Tracers for Routine Applications. J Nucl Med 55:25S–31SPubMedCrossRef Rauscher I, Eiber M, Souvatzoglou M, Schwaiger M, Beer AJ (2014) PET/MR in Oncology: Non-18F-FDG Tracers for Routine Applications. J Nucl Med 55:25S–31SPubMedCrossRef
96.
97.
go back to reference Gámez-Cenzano C, Pino-Sorroche F (2014) Standardization and quantification in FDG-PET/CT imaging for staging and restaging of malignant disease. PET Clin 9:117–127PubMedCrossRef Gámez-Cenzano C, Pino-Sorroche F (2014) Standardization and quantification in FDG-PET/CT imaging for staging and restaging of malignant disease. PET Clin 9:117–127PubMedCrossRef
98.
go back to reference Hicks RJ, Hofman MS (2012) Is there still a role for SPECT-CT in oncology in the PET-CT era? Nat Rev Clin Oncol 9:712–720PubMedCrossRef Hicks RJ, Hofman MS (2012) Is there still a role for SPECT-CT in oncology in the PET-CT era? Nat Rev Clin Oncol 9:712–720PubMedCrossRef
99.
go back to reference Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93SPubMed Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93SPubMed
100.
go back to reference Hillner BE, Siegel BA, Liu D et al (2008) Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol 26:2155–2161PubMedCrossRef Hillner BE, Siegel BA, Liu D et al (2008) Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol 26:2155–2161PubMedCrossRef
101.
go back to reference Saif MW, Tzannou I, Makrilia N, Syrigos K (2010) Role and cost effectiveness of PET/CT in management of patients with cancer. Yale J Biol Med 83:53–65PubMedPubMedCentral Saif MW, Tzannou I, Makrilia N, Syrigos K (2010) Role and cost effectiveness of PET/CT in management of patients with cancer. Yale J Biol Med 83:53–65PubMedPubMedCentral
102.
go back to reference Czernin J, Allen-Auerbach M, Schelbert HR (2006) Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 48:78S–88S Czernin J, Allen-Auerbach M, Schelbert HR (2006) Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 48:78S–88S
103.
go back to reference Sridhar P, Mercier G, Tan J, Truong MT, Daly B, Subramaniam RM (2014) FDG PET metabolic tumor volume segmentation and pathologic volume of primary human solid tumors. AJR Am J Roentgenol 202:1114–1119PubMedCrossRef Sridhar P, Mercier G, Tan J, Truong MT, Daly B, Subramaniam RM (2014) FDG PET metabolic tumor volume segmentation and pathologic volume of primary human solid tumors. AJR Am J Roentgenol 202:1114–1119PubMedCrossRef
104.
go back to reference Teixeira SC, Rebolleda JF, Koolen BB et al (2016) Evaluation of a Hanging-Breast PET System for Primary Tumor Visualization in Patients With Stage I-III Breast Cancer: Comparison With Standard PET/CT. AJR Am J Roentgenol 206:1307–1314PubMedCrossRef Teixeira SC, Rebolleda JF, Koolen BB et al (2016) Evaluation of a Hanging-Breast PET System for Primary Tumor Visualization in Patients With Stage I-III Breast Cancer: Comparison With Standard PET/CT. AJR Am J Roentgenol 206:1307–1314PubMedCrossRef
106.
go back to reference Fraum TJ, Fowler KJ, McConathy J (2016) PET/MRI: Emerging Clinical Applications in Oncology. Acad Radiol 23(2):220–236PubMedCrossRef Fraum TJ, Fowler KJ, McConathy J (2016) PET/MRI: Emerging Clinical Applications in Oncology. Acad Radiol 23(2):220–236PubMedCrossRef
107.
go back to reference Bailey DL, Pichler BJ, Gückel B et al (2018) Combined PET/MRI: Global Warming-Summary Report of the 6th International Workshop on PET/MRI, March 27-29, 2017, Tübingen, Germany. Mol Imaging Biol 20:4–20PubMedCrossRef Bailey DL, Pichler BJ, Gückel B et al (2018) Combined PET/MRI: Global Warming-Summary Report of the 6th International Workshop on PET/MRI, March 27-29, 2017, Tübingen, Germany. Mol Imaging Biol 20:4–20PubMedCrossRef
108.
go back to reference García-Figueiras R, Baleato-González S, Padhani AR et al (2016) Proton magnetic resonance spectroscopy in oncology: the fingerprints of cancer? Diagn Interv Radiol 22:75–89PubMedCrossRef García-Figueiras R, Baleato-González S, Padhani AR et al (2016) Proton magnetic resonance spectroscopy in oncology: the fingerprints of cancer? Diagn Interv Radiol 22:75–89PubMedCrossRef
109.
go back to reference Martín Noguerol T, Sánchez-González J, Martínez Barbero JP, García-Figueiras R, Baleato-González S, Luna A (2016) Clinical Imaging of Tumor Metabolism with ¹H Magnetic Resonance Spectroscopy. Magn Reson Imaging Clin N Am 24:57–86 Martín Noguerol T, Sánchez-González J, Martínez Barbero JP, García-Figueiras R, Baleato-González S, Luna A (2016) Clinical Imaging of Tumor Metabolism with ¹H Magnetic Resonance Spectroscopy. Magn Reson Imaging Clin N Am 24:57–86
112.
go back to reference Glunde K, Jiang L, Moestue SA, Gribbestad IS (2011) MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer. NMR Biomed 24:673–690PubMedPubMedCentralCrossRef Glunde K, Jiang L, Moestue SA, Gribbestad IS (2011) MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer. NMR Biomed 24:673–690PubMedPubMedCentralCrossRef
113.
go back to reference Verma A, Kumar I, Verma N, Aggarwal P, Ojha R (2016) Magnetic resonance spectroscopy- Revisiting the biochemical and molecular milieu of brain tumors. BBA Clin 5:170–178PubMedPubMedCentralCrossRef Verma A, Kumar I, Verma N, Aggarwal P, Ojha R (2016) Magnetic resonance spectroscopy- Revisiting the biochemical and molecular milieu of brain tumors. BBA Clin 5:170–178PubMedPubMedCentralCrossRef
114.
go back to reference Wang P, Guo YM, Liu M et al (2008) A meta-analysis of the accuracy of prostate cancer studies which use magnetic resonance spectroscopy as a diagnostic tool. Korean J Radiol 9:432–438PubMedPubMedCentralCrossRef Wang P, Guo YM, Liu M et al (2008) A meta-analysis of the accuracy of prostate cancer studies which use magnetic resonance spectroscopy as a diagnostic tool. Korean J Radiol 9:432–438PubMedPubMedCentralCrossRef
115.
116.
go back to reference Brindle KM, Bohndiek SE, Gallagher FA, Kettunen MI (2011) Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy. Magn Reson Med 66:505–519PubMedCrossRef Brindle KM, Bohndiek SE, Gallagher FA, Kettunen MI (2011) Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy. Magn Reson Med 66:505–519PubMedCrossRef
117.
go back to reference Peck M, Pollack HA, Friesen A et al (2015) Applications of PET imaging with the proliferation marker [18F]-FLT. Q J Nucl Med Mol Imaging 59:95–104PubMedPubMedCentral Peck M, Pollack HA, Friesen A et al (2015) Applications of PET imaging with the proliferation marker [18F]-FLT. Q J Nucl Med Mol Imaging 59:95–104PubMedPubMedCentral
118.
go back to reference Surov A, Meyer HJ, Wienke A (2017) Associations between apparent diffusion coefficient (ADC) and KI 67 in different tumors: a meta-analysis. Part 1: ADCmean. Oncotarget 8:75434–75444PubMedPubMedCentral Surov A, Meyer HJ, Wienke A (2017) Associations between apparent diffusion coefficient (ADC) and KI 67 in different tumors: a meta-analysis. Part 1: ADCmean. Oncotarget 8:75434–75444PubMedPubMedCentral
119.
go back to reference Surov A, Meyer HJ, Höhn AK et al (2017) Correlations between intravoxel incoherent motion (IVIM) parameters and histological findings in rectal cancer: preliminary results. Oncotarget 8:21974–21983PubMedPubMedCentral Surov A, Meyer HJ, Höhn AK et al (2017) Correlations between intravoxel incoherent motion (IVIM) parameters and histological findings in rectal cancer: preliminary results. Oncotarget 8:21974–21983PubMedPubMedCentral
120.
go back to reference García-Figueiras R, Padhani AR, Beer AJ et al (2015) Imaging of Tumor Angiogenesis for Radiologists--Part 1: Biological and Technical Basis. Curr Probl Diagn Radiol 44:407–424PubMedCrossRef García-Figueiras R, Padhani AR, Beer AJ et al (2015) Imaging of Tumor Angiogenesis for Radiologists--Part 1: Biological and Technical Basis. Curr Probl Diagn Radiol 44:407–424PubMedCrossRef
121.
go back to reference García-Figueiras R, Padhani AR, Beer AJ et al (2015) Imaging of Tumor Angiogenesis for Radiologists--Part 2: Clinical Utility. Curr Probl Diagn Radiol 44:425–436PubMedCrossRef García-Figueiras R, Padhani AR, Beer AJ et al (2015) Imaging of Tumor Angiogenesis for Radiologists--Part 2: Clinical Utility. Curr Probl Diagn Radiol 44:425–436PubMedCrossRef
123.
go back to reference Salem A, O'Connor JPB (2016) Assessment of Tumor Angiogenesis: Dynamic Contrast-enhanced MR Imaging and Beyond. Magn Reson Imaging Clin N Am 24:45–56PubMedCrossRef Salem A, O'Connor JPB (2016) Assessment of Tumor Angiogenesis: Dynamic Contrast-enhanced MR Imaging and Beyond. Magn Reson Imaging Clin N Am 24:45–56PubMedCrossRef
124.
go back to reference Miles KA, Lee TY, Goh V et al (2012) Experimental Cancer Medicine Centre Imaging Network Group. Current status and guidelines for the assessment of tumor vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol 22:1430–1441PubMedCrossRef Miles KA, Lee TY, Goh V et al (2012) Experimental Cancer Medicine Centre Imaging Network Group. Current status and guidelines for the assessment of tumor vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol 22:1430–1441PubMedCrossRef
125.
go back to reference Cuenod CA, Balvay D (2013) Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging 94:1187–1204PubMedCrossRef Cuenod CA, Balvay D (2013) Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging 94:1187–1204PubMedCrossRef
126.
go back to reference García-Figueiras R, Goh VJ, Padhani AR et al (2013) CT perfusion in oncologic imaging: a useful tool? AJR Am J Roentgenol 200:8–19PubMedCrossRef García-Figueiras R, Goh VJ, Padhani AR et al (2013) CT perfusion in oncologic imaging: a useful tool? AJR Am J Roentgenol 200:8–19PubMedCrossRef
127.
go back to reference Thaiss WM, Haberland U, Kaufmann S et al (2016) Iodine concentration as a perfusion surrogate marker in oncology: Further elucidation of the underlying mechanisms using Volume Perfusion CT with 80 kVp. Eur Radiol 26:2929–2936PubMedCrossRef Thaiss WM, Haberland U, Kaufmann S et al (2016) Iodine concentration as a perfusion surrogate marker in oncology: Further elucidation of the underlying mechanisms using Volume Perfusion CT with 80 kVp. Eur Radiol 26:2929–2936PubMedCrossRef
128.
go back to reference Dietrich CF, Averkiou MA, Correas JM, Lassau N, Leen E, Piscaglia F (2012) An EFSUMB introduction into dynamic contrast-enhanced ultrasound (DCE-US) for quantification of tumor perfusion. Ultraschall Med 33:344–351 Dietrich CF, Averkiou MA, Correas JM, Lassau N, Leen E, Piscaglia F (2012) An EFSUMB introduction into dynamic contrast-enhanced ultrasound (DCE-US) for quantification of tumor perfusion. Ultraschall Med 33:344–351
129.
go back to reference Haller S, Zaharchuk G, Thomas DL, Lovblad KO, Barkhof F, Golay X (2016) Arterial Spin Labeling Perfusion of the Brain: Emerging Clinical Applications. Radiology 281:337–356PubMedCrossRef Haller S, Zaharchuk G, Thomas DL, Lovblad KO, Barkhof F, Golay X (2016) Arterial Spin Labeling Perfusion of the Brain: Emerging Clinical Applications. Radiology 281:337–356PubMedCrossRef
130.
go back to reference Lassau N, Chami L, Chebil M et al (2011) Dynamic contrast-enhanced ultrasonography (DCE-US) and anti-angiogenic treatments. Discov Med 11:18–24PubMed Lassau N, Chami L, Chebil M et al (2011) Dynamic contrast-enhanced ultrasonography (DCE-US) and anti-angiogenic treatments. Discov Med 11:18–24PubMed
132.
go back to reference Blankenberg FG, Norfray JF (2011) Multimodality molecular imaging of apoptosis in oncology. AJR Am J Roentgenol 197:308–317PubMedCrossRef Blankenberg FG, Norfray JF (2011) Multimodality molecular imaging of apoptosis in oncology. AJR Am J Roentgenol 197:308–317PubMedCrossRef
133.
go back to reference Delikatny EJ, Chawla S, Leung DJ, Poptani H (2011) MR-visible lipids and the tumor microenvironment. NMR Biomed 24:592–611PubMedPubMedCentral Delikatny EJ, Chawla S, Leung DJ, Poptani H (2011) MR-visible lipids and the tumor microenvironment. NMR Biomed 24:592–611PubMedPubMedCentral
134.
go back to reference Papaevangelou E, Almeida GS, Jamin Y, Robinson SP, deSouza NM (2015) Diffusion-weighted MRI for imaging cell death after cytotoxic or apoptosis-inducing therapy. Br J Cancer 112:1471–1479PubMedPubMedCentralCrossRef Papaevangelou E, Almeida GS, Jamin Y, Robinson SP, deSouza NM (2015) Diffusion-weighted MRI for imaging cell death after cytotoxic or apoptosis-inducing therapy. Br J Cancer 112:1471–1479PubMedPubMedCentralCrossRef
135.
go back to reference De Sousa EMF, Vermeulen L, Fessler E, Medema JP (2013) Cancer heterogeneity--a multifaceted view. EMBO Rep 14:686–695CrossRef De Sousa EMF, Vermeulen L, Fessler E, Medema JP (2013) Cancer heterogeneity--a multifaceted view. EMBO Rep 14:686–695CrossRef
137.
go back to reference Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577PubMedCrossRef Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577PubMedCrossRef
138.
go back to reference O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A (2015) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 21:249–245 O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A (2015) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 21:249–245
139.
go back to reference Davnall F, Yip CS, Ljungqvist G et al (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3:573–589PubMedPubMedCentralCrossRef Davnall F, Yip CS, Ljungqvist G et al (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3:573–589PubMedPubMedCentralCrossRef
140.
go back to reference O'Connor JP, Aboagye EO, Adams JE et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14:169–186PubMedCrossRef O'Connor JP, Aboagye EO, Adams JE et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14:169–186PubMedCrossRef
141.
go back to reference Shukla-Dave A, Obuchowski NA, Chenevert TL et al (2018) Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26518 [Epub ahead of print] Shukla-Dave A, Obuchowski NA, Chenevert TL et al (2018) Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging. https://​doi.​org/​10.​1002/​jmri.​26518 [Epub ahead of print]
142.
go back to reference Huang EP, Lin FI, Shankar LK (2017) Beyond Correlations, Sensitivities, and Specificities: A Roadmap for Demonstrating Utility of Advanced Imaging in Oncology Treatment and Clinical Trial Design. Acad Radiol 24:1036–1049PubMedPubMedCentralCrossRef Huang EP, Lin FI, Shankar LK (2017) Beyond Correlations, Sensitivities, and Specificities: A Roadmap for Demonstrating Utility of Advanced Imaging in Oncology Treatment and Clinical Trial Design. Acad Radiol 24:1036–1049PubMedPubMedCentralCrossRef
143.
go back to reference Dregely I, Prezzi D, Kelly-Morland C, Roccia E, Neji R, Goh V (2018) Imaging biomarkers in oncology: Basics and application to MRI. J Magn Reson Imaging 48:13–26PubMedCrossRef Dregely I, Prezzi D, Kelly-Morland C, Roccia E, Neji R, Goh V (2018) Imaging biomarkers in oncology: Basics and application to MRI. J Magn Reson Imaging 48:13–26PubMedCrossRef
144.
go back to reference Mankoff DA, Farwell MD, Clark AS, Pryma DA (2017) Making Molecular Imaging a Clinical Tool for Precision Oncology: A Review. JAMA Oncol 3:695–701PubMedCrossRef Mankoff DA, Farwell MD, Clark AS, Pryma DA (2017) Making Molecular Imaging a Clinical Tool for Precision Oncology: A Review. JAMA Oncol 3:695–701PubMedCrossRef
145.
go back to reference Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W (2017) Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol 90:20160665PubMedPubMedCentralCrossRef Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W (2017) Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol 90:20160665PubMedPubMedCentralCrossRef
146.
go back to reference Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762PubMedCrossRef Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762PubMedCrossRef
148.
go back to reference Avanzo M, Stancanello J, El Naqa I (2017) Beyond imaging: The promise of radiomics. Phys Med 38:122–139PubMedCrossRef Avanzo M, Stancanello J, El Naqa I (2017) Beyond imaging: The promise of radiomics. Phys Med 38:122–139PubMedCrossRef
149.
go back to reference Pinker K, Shitano F, Sala E et al (2018) Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging 47:604–620PubMedCrossRef Pinker K, Shitano F, Sala E et al (2018) Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging 47:604–620PubMedCrossRef
150.
go back to reference Jansen RW, van Amstel P, Martens RM (2018) Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis. Oncotarget 9:20134–20155PubMedPubMedCentralCrossRef Jansen RW, van Amstel P, Martens RM (2018) Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis. Oncotarget 9:20134–20155PubMedPubMedCentralCrossRef
151.
go back to reference Limkin EJ, Sun R, Dercle L et al (2017) Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol 28:1191–1206PubMedCrossRef Limkin EJ, Sun R, Dercle L et al (2017) Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol 28:1191–1206PubMedCrossRef
152.
go back to reference Kim JY, Gatenby RA (2017) Quantitative Clinical Imaging Methods for Monitoring Intratumoural Evolution. Methods Mol Biol 1513:61–81PubMedCrossRef Kim JY, Gatenby RA (2017) Quantitative Clinical Imaging Methods for Monitoring Intratumoural Evolution. Methods Mol Biol 1513:61–81PubMedCrossRef
153.
go back to reference Cox VL, Bhosale P, Varadhachary GR et al (2017) Cancer Genomics and Important Oncologic Mutations: A Contemporary Guide for Body Imagers. Radiology 283:314–340PubMedCrossRef Cox VL, Bhosale P, Varadhachary GR et al (2017) Cancer Genomics and Important Oncologic Mutations: A Contemporary Guide for Body Imagers. Radiology 283:314–340PubMedCrossRef
154.
go back to reference Shaikh F, Franc B, Allen E et al (2018) Translational Radiomics: Defining the Strategy Pipeline and Considerations for Application-Part 1: From Methodology to Clinical Implementation. J Am Coll Radiol 15:538–542PubMedCrossRef Shaikh F, Franc B, Allen E et al (2018) Translational Radiomics: Defining the Strategy Pipeline and Considerations for Application-Part 1: From Methodology to Clinical Implementation. J Am Coll Radiol 15:538–542PubMedCrossRef
155.
go back to reference Shaikh F, Franc B, Allen E et al (2018) Translational Radiomics: Defining the Strategy Pipeline and Considerations for Application-Part 2: From Clinical Implementation to Enterprise. J Am Coll Radiol 15:543–549PubMedCrossRef Shaikh F, Franc B, Allen E et al (2018) Translational Radiomics: Defining the Strategy Pipeline and Considerations for Application-Part 2: From Clinical Implementation to Enterprise. J Am Coll Radiol 15:543–549PubMedCrossRef
156.
158.
159.
go back to reference Shafiee A, Atala A (2016) Printing Technologies for Medical Applications. Trends Mol Med 22:254–265PubMedCrossRef Shafiee A, Atala A (2016) Printing Technologies for Medical Applications. Trends Mol Med 22:254–265PubMedCrossRef
160.
go back to reference Mankoff DA, Dunnwald LK, Partridge SC, Specht JM (2009) Blood flow-metabolism mismatch: good for the tumor, bad for the patient. Clin Cancer Res 15:5294–5296PubMedPubMedCentralCrossRef Mankoff DA, Dunnwald LK, Partridge SC, Specht JM (2009) Blood flow-metabolism mismatch: good for the tumor, bad for the patient. Clin Cancer Res 15:5294–5296PubMedPubMedCentralCrossRef
162.
go back to reference Stasinopoulos I, Penet MF, Chen Z, Kakkad S, Glunde K, Bhujwalla ZM (2011) Exploiting the tumor microenvironment for theranostic imaging. NMR Biomed 24:636–647PubMedPubMedCentral Stasinopoulos I, Penet MF, Chen Z, Kakkad S, Glunde K, Bhujwalla ZM (2011) Exploiting the tumor microenvironment for theranostic imaging. NMR Biomed 24:636–647PubMedPubMedCentral
Metadata
Title
How clinical imaging can assess cancer biology
Authors
Roberto García-Figueiras
Sandra Baleato-González
Anwar R. Padhani
Antonio Luna-Alcalá
Juan Antonio Vallejo-Casas
Evis Sala
Joan C. Vilanova
Dow-Mu Koh
Michel Herranz-Carnero
Herbert Alberto Vargas
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
Insights into Imaging / Issue 1/2019
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-019-0703-0

Other articles of this Issue 1/2019

Insights into Imaging 1/2019 Go to the issue