Skip to main content
Top
Published in: Abdominal Radiology 4/2018

01-04-2018 | Pictorial essay

Imaging with ultrasound contrast agents: current status and future

Authors: Wui K. Chong, Virginie Papadopoulou, Paul A. Dayton

Published in: Abdominal Radiology | Issue 4/2018

Login to get access

Abstract

Microbubble ultrasound contrast agents (UCAs) were recently approved by the Food and Drug administration for non-cardiac imaging. The physical principles of UCAs, methods of administration, dosage, adverse effects, and imaging techniques both current and future are described. UCAs consist of microbubbles in suspension which strongly interact with the ultrasound beam and are readily detectable by ultrasound imaging systems. They are confined to the blood pool when administered intravenously, unlike iodinated and gadolinium contrast agents. UCAs have a proven safety record based on over two decades of use, during which they have been used in echocardiography in the U.S. and for non-cardiac imaging in the rest of the world. Adverse effects are less common with UCAs than CT/MR contrast agents. Compared to CT and MR, contrast-enhanced ultrasound has the advantages of real-time imaging, portability, and reduced susceptibility to metal and motion artifact. UCAs are not nephrotoxic and can be used in renal failure. High acoustic amplitudes can cause microbubbles to fragment in a manner that can result in short-term increases in capillary permeability or capillary rupture. These bioeffects can be beneficial and have been used to enhance drug delivery under appropriate conditions. Imaging with a mechanical index of < 0.4 preserves the microbubbles and is not typically associated with substantial bioeffects. Molecularly targeted ultrasound contrast agents are created by conjugating the microbubble shell with a peptide, antibody, or other ligand designed to target an endothelial biomarker associated with tumor angiogenesis or inflammation. These microbubbles then accumulate in the microvasculature at target sites where they can be imaged. Ultrasound contrast agents are a valuable addition to the diagnostic imaging toolkit. They will facilitate cross-sectional abdominal imaging in situations where contrast-enhanced CT and MR are contraindicated or impractical.
Literature
1.
go back to reference Huang SF, Chang RF, Moon WK, et al. (2008) Analysis of tumor vascularity using three-dimensional power Doppler ultrasound images. IEEE Trans Med Imaging 27(3):320–330PubMedCrossRef Huang SF, Chang RF, Moon WK, et al. (2008) Analysis of tumor vascularity using three-dimensional power Doppler ultrasound images. IEEE Trans Med Imaging 27(3):320–330PubMedCrossRef
2.
go back to reference McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9(6):713–725PubMedCrossRef McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9(6):713–725PubMedCrossRef
3.
go back to reference Lassau N, Lamuraglia M, Vanel D, et al. (2005) Doppler US with perfusion software and contrast medium injection in the early evaluation of isolated limb perfusion of limb sarcomas: prospective study of 49 cases. Ann Oncol 16(7):1054–1060PubMedCrossRef Lassau N, Lamuraglia M, Vanel D, et al. (2005) Doppler US with perfusion software and contrast medium injection in the early evaluation of isolated limb perfusion of limb sarcomas: prospective study of 49 cases. Ann Oncol 16(7):1054–1060PubMedCrossRef
4.
go back to reference Lindner JR, Womack L, Barrett EJ, et al. (2008) Limb stress-rest perfusion imaging with contrast ultrasound for the assessment of peripheral arterial disease severity. JACC Cardiovasc Imaging 1(3):343–350PubMedPubMedCentralCrossRef Lindner JR, Womack L, Barrett EJ, et al. (2008) Limb stress-rest perfusion imaging with contrast ultrasound for the assessment of peripheral arterial disease severity. JACC Cardiovasc Imaging 1(3):343–350PubMedPubMedCentralCrossRef
5.
go back to reference Darge K, Moeller RT, Trusen A, et al. (2005) Diagnosis of vesicoureteric reflux with low-dose contrast-enhanced harmonic ultrasound imaging. Pediatr Radiol 35(1):73–78PubMedCrossRef Darge K, Moeller RT, Trusen A, et al. (2005) Diagnosis of vesicoureteric reflux with low-dose contrast-enhanced harmonic ultrasound imaging. Pediatr Radiol 35(1):73–78PubMedCrossRef
6.
go back to reference Prefumo F, Serafini G, Martinoli C, et al. (2002) The sonographic evaluation of tubal patency with stimulated acoustic emission imaging. Ultrasound Obstet Gynecol 20(4):386–389PubMedCrossRef Prefumo F, Serafini G, Martinoli C, et al. (2002) The sonographic evaluation of tubal patency with stimulated acoustic emission imaging. Ultrasound Obstet Gynecol 20(4):386–389PubMedCrossRef
8.
go back to reference Claudon M, Dietrich CF, Choi BI, et al. (2013) Guidelines and good clinical practice recommendations for Contrast Enhanced Ultrasound (CEUS) in the liver-update 2012: a WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM. FLAUS and ICUS. Ultrasound Med Biol 39(2):187–210PubMedCrossRef Claudon M, Dietrich CF, Choi BI, et al. (2013) Guidelines and good clinical practice recommendations for Contrast Enhanced Ultrasound (CEUS) in the liver-update 2012: a WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM. FLAUS and ICUS. Ultrasound Med Biol 39(2):187–210PubMedCrossRef
9.
go back to reference Piscaglia F, Nolsøe C, Dietrich CF, et al. (2012) The EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall Med 33(1):33–59PubMedCrossRef Piscaglia F, Nolsøe C, Dietrich CF, et al. (2012) The EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall Med 33(1):33–59PubMedCrossRef
10.
go back to reference D’Onofrio M, Romanini L, Serra C, et al. (2016) Contrast enhancement ultrasound application in focal liver lesions characterization: a retrospective study about guidelines application (SOCEUS-CEUS survey). J Ultrasound 19(2):99–106PubMedCrossRef D’Onofrio M, Romanini L, Serra C, et al. (2016) Contrast enhancement ultrasound application in focal liver lesions characterization: a retrospective study about guidelines application (SOCEUS-CEUS survey). J Ultrasound 19(2):99–106PubMedCrossRef
11.
go back to reference Dawson P, Cosgrove D, Grainger R (1999) Textbook of contrast media. Oxford: ISIS Medical Media Dawson P, Cosgrove D, Grainger R (1999) Textbook of contrast media. Oxford: ISIS Medical Media
12.
go back to reference Burns PN (1996) Harmonic imaging with ultrasound contrast agents. Clin Radiol 51(1):50–55PubMed Burns PN (1996) Harmonic imaging with ultrasound contrast agents. Clin Radiol 51(1):50–55PubMed
13.
go back to reference Forsberg F, Merton DA, Liu J, et al. (1998) Clinical applications of ultrasound contrast agents. Ultrasonics 36(1–5):695–701PubMedCrossRef Forsberg F, Merton DA, Liu J, et al. (1998) Clinical applications of ultrasound contrast agents. Ultrasonics 36(1–5):695–701PubMedCrossRef
14.
go back to reference Schrope BA, Newhouse VL (1993) Second harmonic ultrasonic blood perfusion measurement. Ultrasound Med Biol 19(7):567–579PubMedCrossRef Schrope BA, Newhouse VL (1993) Second harmonic ultrasonic blood perfusion measurement. Ultrasound Med Biol 19(7):567–579PubMedCrossRef
15.
go back to reference Bouakaz A, Frigstad S, Ten Cate FJ, et al. (2002) Super harmonic imaging: a new imaging technique for improved contrast detection. Ultrasound Med Biol 28(1):59–68PubMedCrossRef Bouakaz A, Frigstad S, Ten Cate FJ, et al. (2002) Super harmonic imaging: a new imaging technique for improved contrast detection. Ultrasound Med Biol 28(1):59–68PubMedCrossRef
16.
go back to reference van Neer PL, Danilouchkine MG, Verweij MD, et al. (2011) Comparison of fundamental, second harmonic, and superharmonic imaging: a simulation study. J Acoust Soc Am 130(5):3148–3157PubMedCrossRef van Neer PL, Danilouchkine MG, Verweij MD, et al. (2011) Comparison of fundamental, second harmonic, and superharmonic imaging: a simulation study. J Acoust Soc Am 130(5):3148–3157PubMedCrossRef
17.
go back to reference Lindsey BD, Rojas JD, Dayton PA (2015) On the relationship between microbubble fragmentation, deflation and broadband superharmonic signal production. Ultrasound Med Biol 41(6):1711–1725PubMedPubMedCentralCrossRef Lindsey BD, Rojas JD, Dayton PA (2015) On the relationship between microbubble fragmentation, deflation and broadband superharmonic signal production. Ultrasound Med Biol 41(6):1711–1725PubMedPubMedCentralCrossRef
18.
go back to reference Chomas J, Dayton P, May D, Ferrara K (2002) Nondestructive subharmonic imaging. IEEE Trans Ultrason Ferroelectr FreqControl 49(7):883–892CrossRef Chomas J, Dayton P, May D, Ferrara K (2002) Nondestructive subharmonic imaging. IEEE Trans Ultrason Ferroelectr FreqControl 49(7):883–892CrossRef
19.
go back to reference Forsberg F, Shi WT, Goldberg BB (2000) Subharmonic imaging of contrast agents. Ultrasonics 38(1–8):93–98PubMedCrossRef Forsberg F, Shi WT, Goldberg BB (2000) Subharmonic imaging of contrast agents. Ultrasonics 38(1–8):93–98PubMedCrossRef
20.
go back to reference Shankar PM, Krishna PD, Newhouse VL (1998) Advantages of subharmonic over second harmonic backscatter for contrast-to-tissue echo enhancement. Ultrasound Med Biol 24(3):395–399PubMedCrossRef Shankar PM, Krishna PD, Newhouse VL (1998) Advantages of subharmonic over second harmonic backscatter for contrast-to-tissue echo enhancement. Ultrasound Med Biol 24(3):395–399PubMedCrossRef
21.
go back to reference Abbott JG (1999) Rationale and derivation of MI and TI: a review. Ultrasound Med Biol 25(3):431–441PubMedCrossRef Abbott JG (1999) Rationale and derivation of MI and TI: a review. Ultrasound Med Biol 25(3):431–441PubMedCrossRef
22.
go back to reference Chomas JE, Dayton P, Allen J, et al. (2001) Mechanisms of contrast agent destruction. IEEE Trans Ultrason Ferroelectr Freq Control 48(1):232–248PubMedCrossRef Chomas JE, Dayton P, Allen J, et al. (2001) Mechanisms of contrast agent destruction. IEEE Trans Ultrason Ferroelectr Freq Control 48(1):232–248PubMedCrossRef
23.
go back to reference Lo AH, Kripfgans OD, Carson PL, et al. (2006) Spatial control of gas bubbles and their effects on acoustic fields. Ultrasound Med Biol 32(1):95–106PubMedCrossRef Lo AH, Kripfgans OD, Carson PL, et al. (2006) Spatial control of gas bubbles and their effects on acoustic fields. Ultrasound Med Biol 32(1):95–106PubMedCrossRef
24.
go back to reference Caskey CF, Kruse DE, Dayton PA, et al. (2006) Microbubble oscillation in tubes with diameters of 12, 25, and 195 μm. Appl Phys Lett 88(3):033902CrossRef Caskey CF, Kruse DE, Dayton PA, et al. (2006) Microbubble oscillation in tubes with diameters of 12, 25, and 195 μm. Appl Phys Lett 88(3):033902CrossRef
25.
go back to reference Thomas DH, Sboros V, Emmer M, et al. (2013) Microbubble oscillations in capillary tubes. IEEE Trans Ultrason Ferroelectr Freq Control 60(1):105–114PubMedCrossRef Thomas DH, Sboros V, Emmer M, et al. (2013) Microbubble oscillations in capillary tubes. IEEE Trans Ultrason Ferroelectr Freq Control 60(1):105–114PubMedCrossRef
26.
go back to reference Feingold S, Gessner R, Guracar IM, et al. (2010) Quantitative volumetric perfusion mapping of the microvasculature using contrast ultrasound. Invest Radiol 45(10):669–674PubMedCrossRef Feingold S, Gessner R, Guracar IM, et al. (2010) Quantitative volumetric perfusion mapping of the microvasculature using contrast ultrasound. Invest Radiol 45(10):669–674PubMedCrossRef
27.
go back to reference Ghanem A, DeMaria AN, Lohmaier S, et al. (2007) Triggered replenishment imaging reduces variability of quantitative myocardial contrast echocardiography and allows assessment of myocardial blood flow reserve. Echocardiography 24(2):149–158PubMedCrossRef Ghanem A, DeMaria AN, Lohmaier S, et al. (2007) Triggered replenishment imaging reduces variability of quantitative myocardial contrast echocardiography and allows assessment of myocardial blood flow reserve. Echocardiography 24(2):149–158PubMedCrossRef
28.
go back to reference Pollard RE, Sadlowski AR, Bloch SH, et al. (2002) Contrast-assisted destruction-replenishment ultrasound for the assessment of tumor microvasculature in a rat model. Technol Cancer Res Treat 1(6):459–470PubMedCrossRef Pollard RE, Sadlowski AR, Bloch SH, et al. (2002) Contrast-assisted destruction-replenishment ultrasound for the assessment of tumor microvasculature in a rat model. Technol Cancer Res Treat 1(6):459–470PubMedCrossRef
29.
go back to reference Cosgrove D, Eckersley R, Blomley M, et al. (2001) Quantification of blood flow. Eur Radiol 11(8):1338–1344PubMedCrossRef Cosgrove D, Eckersley R, Blomley M, et al. (2001) Quantification of blood flow. Eur Radiol 11(8):1338–1344PubMedCrossRef
30.
go back to reference Wei K, Jayaweera AR, Firoozan S, et al. (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97(5):473–483PubMedCrossRef Wei K, Jayaweera AR, Firoozan S, et al. (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97(5):473–483PubMedCrossRef
31.
go back to reference Jakobsen JA, Oyen R, Thomsen HS, Morcos SK, Members of Contrast Media Safety Committee of European Society of Urogenital Radiolog (2005) Safety of ultrasound contrast agents. Eur Radiol 15(5):941–945PubMedCrossRef Jakobsen JA, Oyen R, Thomsen HS, Morcos SK, Members of Contrast Media Safety Committee of European Society of Urogenital Radiolog (2005) Safety of ultrasound contrast agents. Eur Radiol 15(5):941–945PubMedCrossRef
32.
go back to reference Wei K, Mulvagh SL, Carson L, et al. (2008) The safety of deFinity and Optison for ultrasound image enhancement: a retrospective analysis of 78,383 administered contrast doses. J Am Soc Echocardiogr 21(11):1202–1206PubMedCrossRef Wei K, Mulvagh SL, Carson L, et al. (2008) The safety of deFinity and Optison for ultrasound image enhancement: a retrospective analysis of 78,383 administered contrast doses. J Am Soc Echocardiogr 21(11):1202–1206PubMedCrossRef
33.
go back to reference Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N (2005) Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 24(1):12–20PubMedCrossRef Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N (2005) Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 24(1):12–20PubMedCrossRef
34.
go back to reference Piscaglia F, Bolondi L (2006) The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med Biol 32(9):1369–1375PubMedCrossRef Piscaglia F, Bolondi L (2006) The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med Biol 32(9):1369–1375PubMedCrossRef
35.
go back to reference Kusnetzky LL, Khalid A, Khumri TM, et al. (2008) Acute mortality in hospitalized patients undergoing echocardiography with and without an ultrasound contrast agent: results in 18,671 consecutive studies. J Am Coll Cardiol 51(17):1704–1706PubMedCrossRef Kusnetzky LL, Khalid A, Khumri TM, et al. (2008) Acute mortality in hospitalized patients undergoing echocardiography with and without an ultrasound contrast agent: results in 18,671 consecutive studies. J Am Coll Cardiol 51(17):1704–1706PubMedCrossRef
36.
go back to reference Main ML, Ryan AC, Davis TE, et al. (2008) Acute mortality in hospitalized patients undergoing echocardiography with and without an ultrasound contrast agent (multicenter registry results in 4,300,966 consecutive patients). Am J Cardiol 102(12):1742–1746PubMedCrossRef Main ML, Ryan AC, Davis TE, et al. (2008) Acute mortality in hospitalized patients undergoing echocardiography with and without an ultrasound contrast agent (multicenter registry results in 4,300,966 consecutive patients). Am J Cardiol 102(12):1742–1746PubMedCrossRef
37.
go back to reference Abdelmoneim SS, Bernier M, Scott CG, et al. (2009) Safety of contrast agent use during stress echocardiography: a 4-year experience from a single-center cohort study of 26,774 patients. JACC Cardiovasc Imaging 2(9):1048–1056PubMedCrossRef Abdelmoneim SS, Bernier M, Scott CG, et al. (2009) Safety of contrast agent use during stress echocardiography: a 4-year experience from a single-center cohort study of 26,774 patients. JACC Cardiovasc Imaging 2(9):1048–1056PubMedCrossRef
38.
go back to reference Parker JM, Weller MW, Feinsteinz LM, et al. (2013) Safety of ultrasound contrast agents in patients with known or suspected cardiac shunts. Am J Cardiol 112(7):1039–1045PubMedCrossRef Parker JM, Weller MW, Feinsteinz LM, et al. (2013) Safety of ultrasound contrast agents in patients with known or suspected cardiac shunts. Am J Cardiol 112(7):1039–1045PubMedCrossRef
39.
go back to reference Bracco Diagnostics (2017) Lumason Prescribing information Bracco Diagnostics (2017) Lumason Prescribing information
40.
go back to reference GE Healthcare (2012) Optison Prescribing information GE Healthcare (2012) Optison Prescribing information
41.
go back to reference Haqshenas SR, Ford IJ, Saffari N (2016) Modelling the effect of acoustic waves on nucleation. J Chem Phys 145(2):024315PubMedCrossRef Haqshenas SR, Ford IJ, Saffari N (2016) Modelling the effect of acoustic waves on nucleation. J Chem Phys 145(2):024315PubMedCrossRef
42.
go back to reference Marquet F, Teichert T, Wu SY, et al. (2014) Real-time, transcranial monitoring of safe blood-brain barrier opening in non-human primates. PLoS ONE 9(2):e84310PubMedPubMedCentralCrossRef Marquet F, Teichert T, Wu SY, et al. (2014) Real-time, transcranial monitoring of safe blood-brain barrier opening in non-human primates. PLoS ONE 9(2):e84310PubMedPubMedCentralCrossRef
43.
go back to reference Karshafian R, Bevan PD, Williams R, Samac S, Burns PN (2009) Sonoporation by ultrasound-activated microbubble contrast agents: effect of acoustic exposure parameters on cell membrane permeability and cell viability. Ultrasound Med Biol 35(5):847–860PubMedCrossRef Karshafian R, Bevan PD, Williams R, Samac S, Burns PN (2009) Sonoporation by ultrasound-activated microbubble contrast agents: effect of acoustic exposure parameters on cell membrane permeability and cell viability. Ultrasound Med Biol 35(5):847–860PubMedCrossRef
44.
go back to reference Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447PubMedCrossRef Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447PubMedCrossRef
45.
go back to reference Price RJ, Skyba DM, Kaul S, Skalak TC (1998) Delivery of colloidal, particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 98(13):1264–1267PubMedCrossRef Price RJ, Skyba DM, Kaul S, Skalak TC (1998) Delivery of colloidal, particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 98(13):1264–1267PubMedCrossRef
46.
go back to reference Miller DL, Quddus J (2000) Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice. Proc Natl Acad Sci USA 97(18):10179–10184PubMedPubMedCentralCrossRef Miller DL, Quddus J (2000) Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice. Proc Natl Acad Sci USA 97(18):10179–10184PubMedPubMedCentralCrossRef
47.
go back to reference Shigeta K, Itoh K, Ookawara S, Taniguchi N, Omoto K (2004) Endothelial cell injury and platelet aggregation induced by contrast ultrasonography in the rat hepatic sinusoid. J Ultrasound Med 23(1):29–36PubMedCrossRef Shigeta K, Itoh K, Ookawara S, Taniguchi N, Omoto K (2004) Endothelial cell injury and platelet aggregation induced by contrast ultrasonography in the rat hepatic sinusoid. J Ultrasound Med 23(1):29–36PubMedCrossRef
48.
go back to reference Burgess A, Hynynen K (2016) Microbubble-assisted ultrasound for drug delivery in the brain and central nervous system. Adv Exp Med Biol 880:293–308PubMedCrossRef Burgess A, Hynynen K (2016) Microbubble-assisted ultrasound for drug delivery in the brain and central nervous system. Adv Exp Med Biol 880:293–308PubMedCrossRef
49.
50.
go back to reference Dimcevski G, Kotopoulis S, Bjånes T, et al. (2016) A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J Control Release 243:172–181PubMedCrossRef Dimcevski G, Kotopoulis S, Bjånes T, et al. (2016) A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J Control Release 243:172–181PubMedCrossRef
51.
52.
go back to reference Kutty S, Xie F, Gao S, et al. (2010) Sonothrombolysis of intra-catheter aged venous thrombi using microbubble enhancement and guided three-dimensional ultrasound pulses. J Am Soc Echocardiogr 23(9):1001–1006PubMedPubMedCentralCrossRef Kutty S, Xie F, Gao S, et al. (2010) Sonothrombolysis of intra-catheter aged venous thrombi using microbubble enhancement and guided three-dimensional ultrasound pulses. J Am Soc Echocardiogr 23(9):1001–1006PubMedPubMedCentralCrossRef
53.
go back to reference Jiang N, Xie B, Zhang X, et al. (2014) Enhancing ablation effects of a microbubble-enhancing contrast agent (“SonoVue”) in the treatment of uterine fibroids with high-intensity focused ultrasound: a randomized controlled trial. Cardiovasc Intervent Radiol 37(5):1321–1328PubMedCrossRef Jiang N, Xie B, Zhang X, et al. (2014) Enhancing ablation effects of a microbubble-enhancing contrast agent (“SonoVue”) in the treatment of uterine fibroids with high-intensity focused ultrasound: a randomized controlled trial. Cardiovasc Intervent Radiol 37(5):1321–1328PubMedCrossRef
54.
go back to reference Kopechek JA, Park EJ, Zhang YZ, et al. (2014) Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions. Phys Med Biol 59(13):3465–3481PubMedPubMedCentralCrossRef Kopechek JA, Park EJ, Zhang YZ, et al. (2014) Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions. Phys Med Biol 59(13):3465–3481PubMedPubMedCentralCrossRef
55.
go back to reference Moyer LC, Timbie KF, Sheeran PS, et al. (2015) High-intensity focused ultrasound ablation enhancement in vivo via phase-shift nanodroplets compared to microbubbles. J Ther Ultrasound 3:7PubMedPubMedCentralCrossRef Moyer LC, Timbie KF, Sheeran PS, et al. (2015) High-intensity focused ultrasound ablation enhancement in vivo via phase-shift nanodroplets compared to microbubbles. J Ther Ultrasound 3:7PubMedPubMedCentralCrossRef
56.
go back to reference ter Haar G (2009) Safety and bio-effects of ultrasound contrast agents. Med Biol Eng Comput 47(8):893–900PubMedCrossRef ter Haar G (2009) Safety and bio-effects of ultrasound contrast agents. Med Biol Eng Comput 47(8):893–900PubMedCrossRef
57.
go back to reference AIUM (2015) Statement on Mammalian Biological Effects in Tissues with Naturally Occurring Gas Bodies AIUM (2015) Statement on Mammalian Biological Effects in Tissues with Naturally Occurring Gas Bodies
58.
59.
go back to reference Sontum PC (2008) Physicochemical characteristics of Sonazoid, a new contrast agent for ultrasound imaging. Ultrasound Med Biol 34(5):824–833PubMedCrossRef Sontum PC (2008) Physicochemical characteristics of Sonazoid, a new contrast agent for ultrasound imaging. Ultrasound Med Biol 34(5):824–833PubMedCrossRef
61.
go back to reference Lindner JR (2004) Molecular imaging with contrast ultrasound and targeted microbubbles. J Nucl Cardiol 11(2):215–221PubMedCrossRef Lindner JR (2004) Molecular imaging with contrast ultrasound and targeted microbubbles. J Nucl Cardiol 11(2):215–221PubMedCrossRef
62.
go back to reference Smeenge M, Tranquart F, Mannaerts CK, et al. (2017) First-in-human ultrasound molecular imaging with a VEGFR2-specific ultrasound molecular contrast agent (BR55) in prostate cancer: a safety and feasibility pilot study. Invest Radiol 52(7):419–427PubMedCrossRef Smeenge M, Tranquart F, Mannaerts CK, et al. (2017) First-in-human ultrasound molecular imaging with a VEGFR2-specific ultrasound molecular contrast agent (BR55) in prostate cancer: a safety and feasibility pilot study. Invest Radiol 52(7):419–427PubMedCrossRef
63.
go back to reference Willmann JK, Bonomo L, Testa AC, et al. (2017) Ultrasound molecular imaging with BR55 in patients with breast and ovarian lesions: first-in-human results. J Clin Oncol 35(19):2133–2140PubMedPubMedCentralCrossRef Willmann JK, Bonomo L, Testa AC, et al. (2017) Ultrasound molecular imaging with BR55 in patients with breast and ovarian lesions: first-in-human results. J Clin Oncol 35(19):2133–2140PubMedPubMedCentralCrossRef
64.
go back to reference Zhou J, Wang H, Zhang H, et al. (2016) VEGFR2-targeted three-dimensional ultrasound imaging can predict responses to antiangiogenic therapy in preclinical models of colon cancer. Cancer Res 76(14):4081–4089PubMedPubMedCentralCrossRef Zhou J, Wang H, Zhang H, et al. (2016) VEGFR2-targeted three-dimensional ultrasound imaging can predict responses to antiangiogenic therapy in preclinical models of colon cancer. Cancer Res 76(14):4081–4089PubMedPubMedCentralCrossRef
65.
go back to reference Streeter JE, Gessner RC, Tsuruta J, et al. (2011) Assessment of molecular imaging of angiogenesis with three-dimensional ultrasonography. Mol Imaging 10(6):7290CrossRef Streeter JE, Gessner RC, Tsuruta J, et al. (2011) Assessment of molecular imaging of angiogenesis with three-dimensional ultrasonography. Mol Imaging 10(6):7290CrossRef
66.
go back to reference Sirsi SR, Flexman ML, Vlachos F, et al. (2012) Contrast ultrasound imaging for identification of early responder tumor models to anti-angiogenic therapy. Ultrasound Med Biol 38(6):1019–1029PubMedPubMedCentralCrossRef Sirsi SR, Flexman ML, Vlachos F, et al. (2012) Contrast ultrasound imaging for identification of early responder tumor models to anti-angiogenic therapy. Ultrasound Med Biol 38(6):1019–1029PubMedPubMedCentralCrossRef
67.
go back to reference Deshpande N, Lutz AM, Ren Y, et al. (2012) Quantification and monitoring of inflammation in murine inflammatory bowel disease with targeted contrast-enhanced US. Radiology 262(1):172–180PubMedPubMedCentralCrossRef Deshpande N, Lutz AM, Ren Y, et al. (2012) Quantification and monitoring of inflammation in murine inflammatory bowel disease with targeted contrast-enhanced US. Radiology 262(1):172–180PubMedPubMedCentralCrossRef
68.
69.
70.
go back to reference Gessner R, Lukacs M, Lee M, et al. (2010) High-resolution, high-contrast ultrasound imaging using a prototype dual-frequency transducer: in vitro and in vivo studies. Trans Ultrason Ferroelectr Freq Control 57(8):1772–1781CrossRef Gessner R, Lukacs M, Lee M, et al. (2010) High-resolution, high-contrast ultrasound imaging using a prototype dual-frequency transducer: in vitro and in vivo studies. Trans Ultrason Ferroelectr Freq Control 57(8):1772–1781CrossRef
71.
go back to reference Hu X, Zheng H, Kruse DE, et al. (2010) A sensitive TLRH targeted imaging technique for ultrasonic molecular imaging. IEEE Trans Ultrason Ferroelectr Freq Control 57(2):305–316PubMedPubMedCentralCrossRef Hu X, Zheng H, Kruse DE, et al. (2010) A sensitive TLRH targeted imaging technique for ultrasonic molecular imaging. IEEE Trans Ultrason Ferroelectr Freq Control 57(2):305–316PubMedPubMedCentralCrossRef
72.
go back to reference Shelton SE, Lee YZ, Lee M, et al. (2015) Quantification of microvascular tortuosity during tumor evolution using acoustic angiography. Ultrasound Med Biol 41(7):1896–1904PubMedPubMedCentralCrossRef Shelton SE, Lee YZ, Lee M, et al. (2015) Quantification of microvascular tortuosity during tumor evolution using acoustic angiography. Ultrasound Med Biol 41(7):1896–1904PubMedPubMedCentralCrossRef
73.
go back to reference Shelton SE, Lindsey BD, Dayton PA, Lee YZ (2017) First-in-human study of acoustic angiography in the breast and peripheral vasculature. Ultrasound Med Biol 43(12):2939–2946PubMedCrossRef Shelton SE, Lindsey BD, Dayton PA, Lee YZ (2017) First-in-human study of acoustic angiography in the breast and peripheral vasculature. Ultrasound Med Biol 43(12):2939–2946PubMedCrossRef
74.
go back to reference Leow CH, Bazigou E, Eckersley RJ, et al. (2015) Flow velocity mapping using contrast enhanced high-frame-rate plane wave ultrasound and image tracking: methods and initial in vitro and in vivo evaluation. Ultrasound Med Biol 41(11):2913–2925PubMedCrossRef Leow CH, Bazigou E, Eckersley RJ, et al. (2015) Flow velocity mapping using contrast enhanced high-frame-rate plane wave ultrasound and image tracking: methods and initial in vitro and in vivo evaluation. Ultrasound Med Biol 41(11):2913–2925PubMedCrossRef
75.
go back to reference Lin F, Shelton SE, Espíndola D, et al. (2017) 3-D ultrasound localization microscopy for identifying microvascular morphology features of tumor angiogenesis at a resolution beyond the diffraction limit of conventional ultrasound. Theranostics 7(1):196–204PubMedPubMedCentralCrossRef Lin F, Shelton SE, Espíndola D, et al. (2017) 3-D ultrasound localization microscopy for identifying microvascular morphology features of tumor angiogenesis at a resolution beyond the diffraction limit of conventional ultrasound. Theranostics 7(1):196–204PubMedPubMedCentralCrossRef
76.
go back to reference Errico C, Pierre J, Pezet S, et al. (2015) Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527(7579):499–502PubMedCrossRef Errico C, Pierre J, Pezet S, et al. (2015) Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527(7579):499–502PubMedCrossRef
Metadata
Title
Imaging with ultrasound contrast agents: current status and future
Authors
Wui K. Chong
Virginie Papadopoulou
Paul A. Dayton
Publication date
01-04-2018
Publisher
Springer US
Published in
Abdominal Radiology / Issue 4/2018
Print ISSN: 2366-004X
Electronic ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-018-1516-1

Other articles of this Issue 4/2018

Abdominal Radiology 4/2018 Go to the issue