Skip to main content
Top
Published in: Experimental & Translational Stroke Medicine 1/2016

Open Access 01-12-2016 | Research

Artery reopening is required for the neurorestorative effects of angiotensin modulation after experimental stroke

Authors: Ahmed Alhusban, Anna Kozak, Wael Eldahshan, Adviye Ergul, Susan C. Fagan

Published in: Experimental & Translational Stroke Medicine | Issue 1/2016

Login to get access

Abstract

Background

Blood flow restoration with fibrinolysis and thrombectomy is recommended to limit injury in stroke patients with proximal artery occlusion. Angiotensin receptor blockers have been shown to be neuroprotective in models of permanent and temporary occlusion, but the benefits on expression of trophic factors have been seen only when the artery is reopened. It is possible that early artery opening with endovascular intervention may increase the likelihood of identifying an effective combination therapy for patients.

Methods

Normotensive male Wistar rats were subjected to mechanical middle cerebral artery occlusion (either temporary or permanent), followed by randomization to receive candesartan (0.3 mg/kg IV) or saline. Functional outcome, infarct size, and biochemical changes were assessed 24 h after ischemia induction.

Results

Lack of reperfusion blunted candesartan induced neuroprotection (p < 0.05) and reduced the improvement of functional outcome (p < 0.05). With reperfusion, candesartan increased mature BDNF expression in the contralateral hemisphere (p < 0.05) and activated prosurvival (Akt-GSK3-β) signaling (p < 0.05). Without reperfusion, candesartan significantly reduced VEGF expression and MMP activation and increased NOGO A expression, creating an environment hostile to recovery.

Conclusion

Candesartan induced pro-recovery effects are dependent on the presence of reperfusion.
Literature
1.
go back to reference Mozaffarian D, et al. Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.CrossRefPubMed Mozaffarian D, et al. Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.CrossRefPubMed
2.
go back to reference Astrup J, et al. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke. 1977;8(1):51–7.CrossRefPubMed Astrup J, et al. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke. 1977;8(1):51–7.CrossRefPubMed
3.
go back to reference Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke. 1981;12(6):723–5.CrossRefPubMed Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke. 1981;12(6):723–5.CrossRefPubMed
4.
go back to reference Hacke W, et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian acute stroke study investigators. Lancet. 1998;352(9136):1245–51.CrossRefPubMed Hacke W, et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian acute stroke study investigators. Lancet. 1998;352(9136):1245–51.CrossRefPubMed
5.
go back to reference Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med. 1995;333(24):1581–7.CrossRef Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med. 1995;333(24):1581–7.CrossRef
6.
go back to reference Berkhemer OA, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20.CrossRefPubMed Berkhemer OA, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20.CrossRefPubMed
7.
go back to reference Campbell BC, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372(11):1009–18.CrossRefPubMed Campbell BC, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372(11):1009–18.CrossRefPubMed
8.
go back to reference Goyal M, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372(11):1019–30.CrossRefPubMed Goyal M, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372(11):1019–30.CrossRefPubMed
9.
go back to reference Jovin TG, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372(24):2296–306.CrossRefPubMed Jovin TG, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372(24):2296–306.CrossRefPubMed
10.
go back to reference Saver JL, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372(24):2285–95.CrossRefPubMed Saver JL, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372(24):2285–95.CrossRefPubMed
11.
go back to reference Dai WJ, et al. Blockade of central angiotensin AT(1) receptors improves neurological outcome and reduces expression of AP-1 transcription factors after focal brain ischemia in rats. Stroke. 1999;30(11):2391–8 (discussion 2398–9).CrossRefPubMed Dai WJ, et al. Blockade of central angiotensin AT(1) receptors improves neurological outcome and reduces expression of AP-1 transcription factors after focal brain ischemia in rats. Stroke. 1999;30(11):2391–8 (discussion 2398–9).CrossRefPubMed
12.
go back to reference Guan W, et al. Vascular protection by angiotensin receptor antagonism involves differential VEGF expression in both hemispheres after experimental stroke. PLoS ONE. 2011;6(9):e24551.CrossRefPubMedPubMedCentral Guan W, et al. Vascular protection by angiotensin receptor antagonism involves differential VEGF expression in both hemispheres after experimental stroke. PLoS ONE. 2011;6(9):e24551.CrossRefPubMedPubMedCentral
14.
go back to reference Ito T, et al. Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist. Stroke. 2002;33(9):2297–303.CrossRefPubMed Ito T, et al. Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist. Stroke. 2002;33(9):2297–303.CrossRefPubMed
15.
go back to reference Zhou J, et al. AT1 receptor blockade regulates the local angiotensin II system in cerebral microvessels from spontaneously hypertensive rats. Stroke. 2006;37(5):1271–6.CrossRefPubMed Zhou J, et al. AT1 receptor blockade regulates the local angiotensin II system in cerebral microvessels from spontaneously hypertensive rats. Stroke. 2006;37(5):1271–6.CrossRefPubMed
16.
go back to reference Fagan SC, et al. Hypertension after experimental cerebral ischemia: candesartan provides neurovascular protection. J Hypertens. 2006;24(3):535–9.CrossRefPubMed Fagan SC, et al. Hypertension after experimental cerebral ischemia: candesartan provides neurovascular protection. J Hypertens. 2006;24(3):535–9.CrossRefPubMed
17.
go back to reference Guan W, et al. Acute treatment with candesartan reduces early injury after permanent middle cerebral artery occlusion. Transl Stroke Res. 2011;2(2):179–85.CrossRefPubMedPubMedCentral Guan W, et al. Acute treatment with candesartan reduces early injury after permanent middle cerebral artery occlusion. Transl Stroke Res. 2011;2(2):179–85.CrossRefPubMedPubMedCentral
18.
go back to reference Kozak A, et al. Candesartan augments ischemia-induced proangiogenic state and results in sustained improvement after stroke. Stroke. 2009;40(5):1870–6.CrossRefPubMedPubMedCentral Kozak A, et al. Candesartan augments ischemia-induced proangiogenic state and results in sustained improvement after stroke. Stroke. 2009;40(5):1870–6.CrossRefPubMedPubMedCentral
19.
go back to reference Kozak W, et al. Vascular protection with candesartan after experimental acute stroke in hypertensive rats: a dose-response study. J Pharmacol Exp Ther. 2008;326(3):773–82.CrossRefPubMed Kozak W, et al. Vascular protection with candesartan after experimental acute stroke in hypertensive rats: a dose-response study. J Pharmacol Exp Ther. 2008;326(3):773–82.CrossRefPubMed
20.
go back to reference Engelhorn T, et al. The angiotensin II type 1-receptor blocker candesartan increases cerebral blood flow, reduces infarct size, and improves neurologic outcome after transient cerebral ischemia in rats. J Cereb Blood Flow Metab. 2004;24(4):467–74.CrossRefPubMed Engelhorn T, et al. The angiotensin II type 1-receptor blocker candesartan increases cerebral blood flow, reduces infarct size, and improves neurologic outcome after transient cerebral ischemia in rats. J Cereb Blood Flow Metab. 2004;24(4):467–74.CrossRefPubMed
21.
go back to reference Brdon J, et al. Comparison between early and delayed systemic treatment with candesartan of rats after ischaemic stroke. J Hypertens. 2007;25(1):187–96.CrossRefPubMed Brdon J, et al. Comparison between early and delayed systemic treatment with candesartan of rats after ischaemic stroke. J Hypertens. 2007;25(1):187–96.CrossRefPubMed
22.
go back to reference Nishimura Y, Ito T, Saavedra JM. Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke. 2000;31(10):2478–86.CrossRefPubMed Nishimura Y, Ito T, Saavedra JM. Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke. 2000;31(10):2478–86.CrossRefPubMed
23.
go back to reference Yamakawa H, et al. Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J Cereb Blood Flow Metab. 2003;23(3):371–80.CrossRefPubMed Yamakawa H, et al. Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J Cereb Blood Flow Metab. 2003;23(3):371–80.CrossRefPubMed
24.
25.
go back to reference Ishrat T, et al. Low-dose candesartan enhances molecular mediators of neuroplasticity and subsequent functional recovery after ischemic stroke in rats. Mol Neurobiol. 2015;51(3):1542–53.CrossRefPubMed Ishrat T, et al. Low-dose candesartan enhances molecular mediators of neuroplasticity and subsequent functional recovery after ischemic stroke in rats. Mol Neurobiol. 2015;51(3):1542–53.CrossRefPubMed
26.
go back to reference Pundik S, Xu K, Sundararajan S. Reperfusion brain injury: focus on cellular bioenergetics. Neurology. 2012;79(13 Suppl 1):S44–51.CrossRefPubMed Pundik S, Xu K, Sundararajan S. Reperfusion brain injury: focus on cellular bioenergetics. Neurology. 2012;79(13 Suppl 1):S44–51.CrossRefPubMed
27.
go back to reference Heiss WD. The ischemic penumbra: how does tissue injury evolve? Ann N Y Acad Sci. 2012;1268:26–34.CrossRefPubMed Heiss WD. The ischemic penumbra: how does tissue injury evolve? Ann N Y Acad Sci. 2012;1268:26–34.CrossRefPubMed
28.
go back to reference Muller HD, et al. Brain-derived neurotrophic factor but not forced arm use improves long-term outcome after photothrombotic stroke and transiently upregulates binding densities of excitatory glutamate receptors in the rat brain. Stroke. 2008;39(3):1012–21.CrossRefPubMed Muller HD, et al. Brain-derived neurotrophic factor but not forced arm use improves long-term outcome after photothrombotic stroke and transiently upregulates binding densities of excitatory glutamate receptors in the rat brain. Stroke. 2008;39(3):1012–21.CrossRefPubMed
29.
go back to reference Schabitz WR, et al. Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke. 2004;35(4):992–7.CrossRefPubMed Schabitz WR, et al. Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke. 2004;35(4):992–7.CrossRefPubMed
30.
go back to reference Schabitz WR, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007;38(7):2165–72.CrossRefPubMed Schabitz WR, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007;38(7):2165–72.CrossRefPubMed
31.
go back to reference Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma. 2004;21(1):33–9.CrossRefPubMed Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma. 2004;21(1):33–9.CrossRefPubMed
32.
33.
go back to reference Marini AM, et al. Role of brain-derived neurotrophic factor and NF-kappaB in neuronal plasticity and survival: from genes to phenotype. Restor Neurol Neurosci. 2004;22(2):121–30.PubMed Marini AM, et al. Role of brain-derived neurotrophic factor and NF-kappaB in neuronal plasticity and survival: from genes to phenotype. Restor Neurol Neurosci. 2004;22(2):121–30.PubMed
34.
go back to reference Mies G, et al. Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab. 1991;11(5):753–61.CrossRefPubMed Mies G, et al. Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab. 1991;11(5):753–61.CrossRefPubMed
36.
go back to reference Pernet V, Schwab ME. The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res. 2012;349(1):97–104.CrossRefPubMed Pernet V, Schwab ME. The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res. 2012;349(1):97–104.CrossRefPubMed
37.
go back to reference Schrader J, et al. The ACCESS Study: evaluation of acute candesartan cilexetil therapy in stroke survivors. Stroke. 2003;34(7):1699–703.CrossRefPubMed Schrader J, et al. The ACCESS Study: evaluation of acute candesartan cilexetil therapy in stroke survivors. Stroke. 2003;34(7):1699–703.CrossRefPubMed
38.
go back to reference Sandset EC, et al. The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial. Lancet. 2011;377(9767):741–50.CrossRefPubMed Sandset EC, et al. The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial. Lancet. 2011;377(9767):741–50.CrossRefPubMed
Metadata
Title
Artery reopening is required for the neurorestorative effects of angiotensin modulation after experimental stroke
Authors
Ahmed Alhusban
Anna Kozak
Wael Eldahshan
Adviye Ergul
Susan C. Fagan
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Experimental & Translational Stroke Medicine / Issue 1/2016
Electronic ISSN: 2040-7378
DOI
https://doi.org/10.1186/s13231-016-0018-x

Other articles of this Issue 1/2016

Experimental & Translational Stroke Medicine 1/2016 Go to the issue