Skip to main content
Top
Published in: Allergy, Asthma & Clinical Immunology 1/2019

Open Access 01-12-2019 | Bronchial Asthma | Research

Epigenome-wide association study of asthma and wheeze characterizes loci within HK1

Authors: Todd M. Everson, Hongmei Zhang, Gabrielle A. Lockett, Akhilesh Kaushal, Melinda Forthofer, Susan L. Ewart, Kimberley Burrows, Caroline L. Relton, Gemma C. Sharp, A. John Henderson, Veeresh K. Patil, Faisal I. Rezwan, S. Hasan Arshad, John W. Holloway, Wilfried Karmaus

Published in: Allergy, Asthma & Clinical Immunology | Issue 1/2019

Login to get access

Abstract

Background

To identify novel epigenetic markers of adolescent asthma and replicate findings in an independent cohort, then explore whether such markers are detectable at birth, predictive of early-life wheeze, and associated with gene expression in cord blood.

Methods

We performed epigenome-wide screening with recursive random forest feature selection and internal validation in the IOW birth cohort. We then tested whether we could replicate these findings in the independent cohort ALSPAC and followed-up our top finding with children of the IOW cohort.

Results

We identified 10 CpG sites associated with adolescent asthma at a 5% false discovery rate (IOW, n = 370), five of which exhibited evidence of associations in the replication study (ALSPAC, n = 720). One site, cg16658191, within HK1 displayed particularly strong associations after cellular heterogeneity adjustments in both cohorts (ORIOW = 0.17, 95% CI 0.04–0.57) (ORALSPAC = 0.57, 95% CI 0.38–0.87). Additionally, higher expression of HK1 (OR = 3.81, 95% CI 1.41–11.77) in cord blood was predictive of wheezing in infancy (n = 82).

Conclusion

We identified novel associations between asthma and wheeze with methylation at cg16658191 and the expression of HK1, which may serve as markers of, predictors of, and potentially etiologic factors involved in asthma and early life wheeze.
Appendix
Available only for authorised users
Literature
2.
go back to reference Akinbami LJ, Moorman JE, Liu X. Asthma Prevalence, Health Care Use, and Mortality: United States, 2005–2009. National Health Statistics Reports. Jhyattsville, MD; 2011. Akinbami LJ, Moorman JE, Liu X. Asthma Prevalence, Health Care Use, and Mortality: United States, 2005–2009. National Health Statistics Reports. Jhyattsville, MD; 2011.
3.
go back to reference Lötvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A, et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol. 2011;127(2):355–60.CrossRef Lötvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A, et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol. 2011;127(2):355–60.CrossRef
4.
go back to reference DeVries A, Vercelli D. Early predictors of asthma and allergy in children: the role of epigenetics. Curr Opin Allergy Clin Immunol. 2015;15(5):435–9.CrossRef DeVries A, Vercelli D. Early predictors of asthma and allergy in children: the role of epigenetics. Curr Opin Allergy Clin Immunol. 2015;15(5):435–9.CrossRef
5.
go back to reference Durham AL, Wiegman C, Adcock IM. Epigenetics of asthma. Biochim Biophys Acta. 2011;1810(11):1103–9.CrossRef Durham AL, Wiegman C, Adcock IM. Epigenetics of asthma. Biochim Biophys Acta. 2011;1810(11):1103–9.CrossRef
6.
go back to reference Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.CrossRef Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.CrossRef
7.
go back to reference Ho S. Environmental epigenetics of asthma: an update. J Allergy Clin Immunol. 2010;126(3):453–65.CrossRef Ho S. Environmental epigenetics of asthma: an update. J Allergy Clin Immunol. 2010;126(3):453–65.CrossRef
8.
go back to reference Yang IV, Tomfohr J, Singh J, Foss CM, Marshall HE, Que LG, et al. The clinical and environmental determinants of airway transcriptional profiles in allergic asthma. Am J Respir Crit Care Med. 2012;185(6):620–7.CrossRef Yang IV, Tomfohr J, Singh J, Foss CM, Marshall HE, Que LG, et al. The clinical and environmental determinants of airway transcriptional profiles in allergic asthma. Am J Respir Crit Care Med. 2012;185(6):620–7.CrossRef
10.
go back to reference Arathimos R, Suderman M, Sharp GC, Burrows K, Granell R, Tilling K, et al. Epigenome-wide association study of asthma and wheeze in childhood and adolescence. Clin Epigenetics. 2017;9:112.CrossRef Arathimos R, Suderman M, Sharp GC, Burrows K, Granell R, Tilling K, et al. Epigenome-wide association study of asthma and wheeze in childhood and adolescence. Clin Epigenetics. 2017;9:112.CrossRef
11.
go back to reference Barton SJ, Ngo S, Costello P, Garratt E, El-Heis S, Antoun E, et al. DNA methylation of Th2 lineage determination genes at birth is associated with allergic outcomes in childhood. Clin Exp Allergy. 2017;47(12):1599–608.CrossRef Barton SJ, Ngo S, Costello P, Garratt E, El-Heis S, Antoun E, et al. DNA methylation of Th2 lineage determination genes at birth is associated with allergic outcomes in childhood. Clin Exp Allergy. 2017;47(12):1599–608.CrossRef
12.
go back to reference DeVries A, Wlasiuk G, Miller SJ, Bosco A, Stern DA, Lohman IC, et al. Epigenome-wide analysis links SMAD3 methylation at birth to asthma in children of asthmatic mothers. J Allergy Clin Immunol. 2017;140(2):534–42.CrossRef DeVries A, Wlasiuk G, Miller SJ, Bosco A, Stern DA, Lohman IC, et al. Epigenome-wide analysis links SMAD3 methylation at birth to asthma in children of asthmatic mothers. J Allergy Clin Immunol. 2017;140(2):534–42.CrossRef
13.
go back to reference Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet. 2014;383(9928):1581–92.CrossRef Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet. 2014;383(9928):1581–92.CrossRef
14.
go back to reference Somineni HK, Zhang K, Biagini Myers JM, Kovacic MB, Ulm A, Jurcak N, et al. TET1 methylation is associated with childhood asthma traffic-related air pollution. J Allergy Clin Immunol. 2016;137(3):797–805.CrossRef Somineni HK, Zhang K, Biagini Myers JM, Kovacic MB, Ulm A, Jurcak N, et al. TET1 methylation is associated with childhood asthma traffic-related air pollution. J Allergy Clin Immunol. 2016;137(3):797–805.CrossRef
15.
go back to reference Prunicki M, Stell L, Dinakarpandian D, de Planell-Saguer M, Lucas RW, Hammond SK, et al. Exposure to NO2, CO, and PM2.5 is linked to regional DNA methylation differences in asthma. Clin Epigenetics. 2018;10(1):2.CrossRef Prunicki M, Stell L, Dinakarpandian D, de Planell-Saguer M, Lucas RW, Hammond SK, et al. Exposure to NO2, CO, and PM2.5 is linked to regional DNA methylation differences in asthma. Clin Epigenetics. 2018;10(1):2.CrossRef
16.
go back to reference Verlaan DJ, Berlivet S, Hunninghake GM, Madore AM, Larivière M, Moussette S, et al. Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ormdl3 locus associated with the risk of asthma and autoimmune disease. Am J Hum Genet. 2009;85(3):377–93.CrossRef Verlaan DJ, Berlivet S, Hunninghake GM, Madore AM, Larivière M, Moussette S, et al. Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ormdl3 locus associated with the risk of asthma and autoimmune disease. Am J Hum Genet. 2009;85(3):377–93.CrossRef
17.
go back to reference Kothari PH, Qiu W, Croteau-Chonka DC, Martinez FD, Liu AH, Lemanske RF, et al. The role of local CpG DNA methylation in mediating the 17q21 asthma-susceptibility GSDMB/ORMDL3 expression quantitative trait locus. J Allergy Clin Immunol. 2018;141(6):2282–2286.e6.CrossRef Kothari PH, Qiu W, Croteau-Chonka DC, Martinez FD, Liu AH, Lemanske RF, et al. The role of local CpG DNA methylation in mediating the 17q21 asthma-susceptibility GSDMB/ORMDL3 expression quantitative trait locus. J Allergy Clin Immunol. 2018;141(6):2282–2286.e6.CrossRef
18.
go back to reference Xu CJ, Söderhäll C, Bustamante M, Baïz N, Gruzieva O, Gehring U, et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respir Med. 2018;6:379–88.CrossRef Xu CJ, Söderhäll C, Bustamante M, Baïz N, Gruzieva O, Gehring U, et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respir Med. 2018;6:379–88.CrossRef
19.
go back to reference Arshad SH, Holloway JW, Karmaus W, Zhang H, Ewart S, Mansfield L, et al. Cohort profile: the Isle of Wight whole population birth cohort (IOWBC). Int J Epidemiol. 2018;47(4):1043–1044i.CrossRef Arshad SH, Holloway JW, Karmaus W, Zhang H, Ewart S, Mansfield L, et al. Cohort profile: the Isle of Wight whole population birth cohort (IOWBC). Int J Epidemiol. 2018;47(4):1043–1044i.CrossRef
20.
go back to reference Asher MI, Keil U, Anderson HR, Beasley R, Crane J, Martinez F, et al. International study of asthma and allergies in childhood (ISAAC): rationale and methods. Eur Respir J. 1995;8(3):483–91.CrossRef Asher MI, Keil U, Anderson HR, Beasley R, Crane J, Martinez F, et al. International study of asthma and allergies in childhood (ISAAC): rationale and methods. Eur Respir J. 1995;8(3):483–91.CrossRef
21.
go back to reference Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38.CrossRef Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38.CrossRef
22.
go back to reference Scott M, Raza A, Karmaus W, Mitchell F, Grundy J, Kurukulaaratchy RJ, et al. Influence of atopy and asthma on exhaled nitric oxide in an unselected birth cohort study. Thorax. 2010;65:258–63.CrossRef Scott M, Raza A, Karmaus W, Mitchell F, Grundy J, Kurukulaaratchy RJ, et al. Influence of atopy and asthma on exhaled nitric oxide in an unselected birth cohort study. Thorax. 2010;65:258–63.CrossRef
23.
go back to reference Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Smith GD, et al. Cohort profile: the avon longitudinal study of parents and children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42:97–110.CrossRef Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Smith GD, et al. Cohort profile: the avon longitudinal study of parents and children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42:97–110.CrossRef
24.
go back to reference Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort profile: the ‘Children of the 90 s’—the index offspring of the avon longitudinal study of parents and children. Eur J Epidemiol. 2013;42:111–27. Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort profile: the ‘Children of the 90 s’—the index offspring of the avon longitudinal study of parents and children. Eur J Epidemiol. 2013;42:111–27.
25.
go back to reference Relton CL, Gaunt T, McArdle W, Ho K, Duggirala A, Shihab H, et al. Data resource profile: accessible resource for integrated epigenomic studies (ARIES). Int J Epidemiol. 2015;44:1181–90.CrossRef Relton CL, Gaunt T, McArdle W, Ho K, Duggirala A, Shihab H, et al. Data resource profile: accessible resource for integrated epigenomic studies (ARIES). Int J Epidemiol. 2015;44:1181–90.CrossRef
26.
go back to reference Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén SE, Greco D, et al. Differential DNA methylation in purified human blood cells: Implications for cell lineage and studies on disease susceptibility. PLoS ONE. 2012;7(7):e41361.CrossRef Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén SE, Greco D, et al. Differential DNA methylation in purified human blood cells: Implications for cell lineage and studies on disease susceptibility. PLoS ONE. 2012;7(7):e41361.CrossRef
27.
go back to reference Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86.CrossRef Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86.CrossRef
29.
go back to reference Goldstein BA, Hubbard AE, Cutler A, Barcellos LF. An application of Random Forests to a genome-wide association dataset: Methodological considerations & new findings. BMC Genet. 2010;11:49.CrossRef Goldstein BA, Hubbard AE, Cutler A, Barcellos LF. An application of Random Forests to a genome-wide association dataset: Methodological considerations & new findings. BMC Genet. 2010;11:49.CrossRef
30.
go back to reference Everson TM, Lyons G, Zhang H, Soto-Ramírez N, Lockett GA, Patil V, et al. DNA methylation loci associated with atopy and high serum IgE: a genome-wide application of recursive Random Forest feature selection. Genome Med. 2015;7:89.CrossRef Everson TM, Lyons G, Zhang H, Soto-Ramírez N, Lockett GA, Patil V, et al. DNA methylation loci associated with atopy and high serum IgE: a genome-wide application of recursive Random Forest feature selection. Genome Med. 2015;7:89.CrossRef
31.
go back to reference Storey JD, Taylor JE, Siegmund D. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. J R Stat Soc Ser B Stat Methodol. 2004;66(1):187–205.CrossRef Storey JD, Taylor JE, Siegmund D. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. J R Stat Soc Ser B Stat Methodol. 2004;66(1):187–205.CrossRef
32.
go back to reference Bakulski KM, Feinberg JI, Andrews SV, Yang J, Mckenney S, Witter F, et al. DNA methylation of cord blood cell types: applications for mixed cell birth studies. Epigenetics. 2016;11(5):354–62.CrossRef Bakulski KM, Feinberg JI, Andrews SV, Yang J, Mckenney S, Witter F, et al. DNA methylation of cord blood cell types: applications for mixed cell birth studies. Epigenetics. 2016;11(5):354–62.CrossRef
33.
go back to reference Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, et al. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS ONE. 2011;6(1):e14524.CrossRef Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, et al. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS ONE. 2011;6(1):e14524.CrossRef
34.
go back to reference John S, Weiss JN, Ribalet B. Subcellular localization of hexokinases i and ii directs the metabolic fate of glucose. PLoS ONE. 2011;6(3):e17674.CrossRef John S, Weiss JN, Ribalet B. Subcellular localization of hexokinases i and ii directs the metabolic fate of glucose. PLoS ONE. 2011;6(3):e17674.CrossRef
35.
go back to reference Abu-Hamad S, Zaid H, Israelson A, Nahon E, Shoshan-Barmatz V. Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1. J Biol Chem. 2008;283(19):13482–90.CrossRef Abu-Hamad S, Zaid H, Israelson A, Nahon E, Shoshan-Barmatz V. Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1. J Biol Chem. 2008;283(19):13482–90.CrossRef
36.
go back to reference Van Wijk R, Van Solinge WW. The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis. Blood. 2005;106(13):4034–42.CrossRef Van Wijk R, Van Solinge WW. The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis. Blood. 2005;106(13):4034–42.CrossRef
37.
go back to reference Hermansen MC. Nucleated red blood cells in the fetus and newborn. Arch Dis Child Fetal Neonatal Ed. 2001;84(3):F211–5.CrossRef Hermansen MC. Nucleated red blood cells in the fetus and newborn. Arch Dis Child Fetal Neonatal Ed. 2001;84(3):F211–5.CrossRef
38.
go back to reference Rusconi F, Galassi C, Forastiere F, Bellasio M, De Sario M, Ciccone G, et al. Maternal complications and procedures in pregnancy and at birth and wheezing phenotypes in children. Am J Respir Crit Care. 2007;175:16–21.CrossRef Rusconi F, Galassi C, Forastiere F, Bellasio M, De Sario M, Ciccone G, et al. Maternal complications and procedures in pregnancy and at birth and wheezing phenotypes in children. Am J Respir Crit Care. 2007;175:16–21.CrossRef
39.
go back to reference Edwards MO, Kotecha SJ, Lowe J, Richards L, Watkins WJ, Kotecha S. Management of prematurity-associated wheeze and its association with atopy. PLoS ONE. 2016;11(5):e0155695.CrossRef Edwards MO, Kotecha SJ, Lowe J, Richards L, Watkins WJ, Kotecha S. Management of prematurity-associated wheeze and its association with atopy. PLoS ONE. 2016;11(5):e0155695.CrossRef
40.
go back to reference Schindler A, Foley E. Hexokinase 1 blocks apoptotic signals at the mitochondria. Cell Signal. 2013;25(12):2685–92.CrossRef Schindler A, Foley E. Hexokinase 1 blocks apoptotic signals at the mitochondria. Cell Signal. 2013;25(12):2685–92.CrossRef
41.
go back to reference Kroemer G, Pouyssegur J. Review tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13:472–82.CrossRef Kroemer G, Pouyssegur J. Review tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13:472–82.CrossRef
42.
go back to reference Sen S, Kaminiski R, Deshmane S, Langford D, Kahlili K, Amini S, et al. Role of hexokinase-1 in the survival of HIV-1- infected macrophages. Cell Cycle. 2015;14(7):980–9.CrossRef Sen S, Kaminiski R, Deshmane S, Langford D, Kahlili K, Amini S, et al. Role of hexokinase-1 in the survival of HIV-1- infected macrophages. Cell Cycle. 2015;14(7):980–9.CrossRef
43.
go back to reference Luo HR, Loison F. Constitutive neutrophil apoptosis: mechanisms and regulation. Am J Hematol. 2008;83(4):288–95.CrossRef Luo HR, Loison F. Constitutive neutrophil apoptosis: mechanisms and regulation. Am J Hematol. 2008;83(4):288–95.CrossRef
44.
go back to reference Yang EJ, Choi E, Ko J, Kim D, Lee J-S, Kim IS. Differential effect of CCL2 on constitutive neutrophil apoptosis between normal and asthmatic subjects. J Cell Physiol. 2011;227:2567–77.CrossRef Yang EJ, Choi E, Ko J, Kim D, Lee J-S, Kim IS. Differential effect of CCL2 on constitutive neutrophil apoptosis between normal and asthmatic subjects. J Cell Physiol. 2011;227:2567–77.CrossRef
45.
go back to reference Potapinska O, Demkow U. T lymphocyte apoptosis in asthma. Eur J Med Res. 2009;14:192–5.CrossRef Potapinska O, Demkow U. T lymphocyte apoptosis in asthma. Eur J Med Res. 2009;14:192–5.CrossRef
46.
go back to reference Min J, Zhang W, Gu Y, Hong L, Yao L, Li F, et al. CIDE-3 interacts with lipopolysaccharide-induced tumor necrosis factor, and overexpression increases apoptosis in hepatocellular carcinoma. Med Oncol. 2011;28:S219–2227.CrossRef Min J, Zhang W, Gu Y, Hong L, Yao L, Li F, et al. CIDE-3 interacts with lipopolysaccharide-induced tumor necrosis factor, and overexpression increases apoptosis in hepatocellular carcinoma. Med Oncol. 2011;28:S219–2227.CrossRef
47.
go back to reference Tang X, Molina M, Amar S. p53 short peptide (p53pep164) regulates lipopolysaccharide-induced tumor necrosis factor-alpha factor/cytokine expression. Cancer Res. 2007;67(3):1308–16.CrossRef Tang X, Molina M, Amar S. p53 short peptide (p53pep164) regulates lipopolysaccharide-induced tumor necrosis factor-alpha factor/cytokine expression. Cancer Res. 2007;67(3):1308–16.CrossRef
48.
go back to reference Naumova AK, Al Tuwaijri A, Morin A, Vaillancout VT, Madore A-M, Berlivet S, et al. Sex- and age-dependent DNA methylation at the 17q12-q21 locus associated with childhood asthma. Hum Genet. 2013;132:811–22.CrossRef Naumova AK, Al Tuwaijri A, Morin A, Vaillancout VT, Madore A-M, Berlivet S, et al. Sex- and age-dependent DNA methylation at the 17q12-q21 locus associated with childhood asthma. Hum Genet. 2013;132:811–22.CrossRef
49.
go back to reference Sano Y, Date H, Igarashi S, Onodera O, Oyake M, Takahashi T, et al. Aprataxin, the causative protein for EAOH is a nuclear protein with a potential role as a DNA repair protein. Am Neurol Assoc. 2004;55:241–9.CrossRef Sano Y, Date H, Igarashi S, Onodera O, Oyake M, Takahashi T, et al. Aprataxin, the causative protein for EAOH is a nuclear protein with a potential role as a DNA repair protein. Am Neurol Assoc. 2004;55:241–9.CrossRef
Metadata
Title
Epigenome-wide association study of asthma and wheeze characterizes loci within HK1
Authors
Todd M. Everson
Hongmei Zhang
Gabrielle A. Lockett
Akhilesh Kaushal
Melinda Forthofer
Susan L. Ewart
Kimberley Burrows
Caroline L. Relton
Gemma C. Sharp
A. John Henderson
Veeresh K. Patil
Faisal I. Rezwan
S. Hasan Arshad
John W. Holloway
Wilfried Karmaus
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Allergy, Asthma & Clinical Immunology / Issue 1/2019
Electronic ISSN: 1710-1492
DOI
https://doi.org/10.1186/s13223-019-0356-z

Other articles of this Issue 1/2019

Allergy, Asthma & Clinical Immunology 1/2019 Go to the issue