Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2017

Open Access 01-12-2017 | Research

N-truncated Aβ4–x peptides in sporadic Alzheimer’s disease cases and transgenic Alzheimer mouse models

Authors: Oliver Wirths, Susanne Walter, Inga Kraus, Hans W. Klafki, Martina Stazi, Timo J. Oberstein, Jorge Ghiso, Jens Wiltfang, Thomas A. Bayer, Sascha Weggen

Published in: Alzheimer's Research & Therapy | Issue 1/2017

Login to get access

Abstract

Background

The deposition of neurotoxic amyloid-β (Aβ) peptides in plaques in the brain parenchyma and in cerebral blood vessels is considered to be a key event in Alzheimer’s disease (AD) pathogenesis. Although the presence and impact of full-length Aβ peptides such as Aβ1–40 and Aβ1–42 have been analyzed extensively, the deposition of N-terminally truncated Aβ peptide species has received much less attention, largely because of the lack of specific antibodies.

Methods

This paper describes the generation and characterization of novel antibodies selective for Aβ4–x peptides and provides immunohistochemical evidence of Aβ4–x in the human brain and its distribution in the APP/PS1KI and 5XFAD transgenic mouse models.

Results

The Aβ4–x staining pattern was restricted mainly to amyloid plaque cores and cerebral amyloid angiopathy in AD and Down syndrome cases and in both AD mouse models. In contrast, diffuse amyloid deposits were largely negative for Aβ4–x immunoreactivity. No overt intraneuronal staining was observed.

Conclusions

The findings of this study are consistent with previous reports demonstrating a high aggregation propensity of Aβ4–x peptides and suggest an important role of these N-truncated Aβ species in the process of amyloidogenesis and plaque core formation.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12:383–8.CrossRefPubMed Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12:383–8.CrossRefPubMed
4.
go back to reference Beher D, Wrigley JD, Owens AP, Shearman MS. Generation of C-terminally truncated amyloid-β peptides is dependent on γ-secretase activity. J Neurochem. 2002;82:563–75.CrossRefPubMed Beher D, Wrigley JD, Owens AP, Shearman MS. Generation of C-terminally truncated amyloid-β peptides is dependent on γ-secretase activity. J Neurochem. 2002;82:563–75.CrossRefPubMed
5.
go back to reference Reinert J, Richard BC, Klafki HW, Friedrich B, Bayer TA, Wiltfang J, Kovacs GG, Ingelsson M, Lannfelt L, Paetau A, et al. Deposition of C-terminally truncated Aβ species Aβ37 and Aβ39 in Alzheimer’s disease and transgenic mouse models. Acta Neuropathol Commun. 2016;4:24.CrossRefPubMedPubMedCentral Reinert J, Richard BC, Klafki HW, Friedrich B, Bayer TA, Wiltfang J, Kovacs GG, Ingelsson M, Lannfelt L, Paetau A, et al. Deposition of C-terminally truncated Aβ species Aβ37 and Aβ39 in Alzheimer’s disease and transgenic mouse models. Acta Neuropathol Commun. 2016;4:24.CrossRefPubMedPubMedCentral
6.
go back to reference Saito T, Suemoto T, Brouwers N, Sleegers K, Funamoto S, Mihira N, Matsuba Y, Yamada K, Nilsson P, Takano J, et al. Potent amyloidogenicity and pathogenicity of Aβ43. Nat Neurosci. 2011;14:1023–32.CrossRefPubMed Saito T, Suemoto T, Brouwers N, Sleegers K, Funamoto S, Mihira N, Matsuba Y, Yamada K, Nilsson P, Takano J, et al. Potent amyloidogenicity and pathogenicity of Aβ43. Nat Neurosci. 2011;14:1023–32.CrossRefPubMed
7.
go back to reference Savastano A, Klafki H, Haussmann U, Oberstein TJ, Muller P, Wirths O, Wiltfang J, Bayer TA. N-truncated Aβ2–X starting with position two in sporadic Alzheimer’s disease cases and two Alzheimer mouse models. J Alzheimers Dis. 2016;49:101–10.CrossRefPubMed Savastano A, Klafki H, Haussmann U, Oberstein TJ, Muller P, Wirths O, Wiltfang J, Bayer TA. N-truncated Aβ2–X starting with position two in sporadic Alzheimer’s disease cases and two Alzheimer mouse models. J Alzheimers Dis. 2016;49:101–10.CrossRefPubMed
8.
go back to reference Wirths O, Bethge T, Marcello A, Harmeier A, Jawhar S, Lucassen PJ, Multhaup G, Brody DL, Esparza T, Ingelsson M, et al. Pyroglutamate Aβ pathology in APP/PS1KI mice, sporadic and familial Alzheimer’s disease cases. J Neural Transm. 2010;117:85–96.CrossRefPubMed Wirths O, Bethge T, Marcello A, Harmeier A, Jawhar S, Lucassen PJ, Multhaup G, Brody DL, Esparza T, Ingelsson M, et al. Pyroglutamate Aβ pathology in APP/PS1KI mice, sporadic and familial Alzheimer’s disease cases. J Neural Transm. 2010;117:85–96.CrossRefPubMed
9.
go back to reference Iwatsubo T, Saido TC, Mann DM, Lee VM, Trojanowski JQ. Full-length amyloid-β(1–42(43)) and amino-terminally modified and truncated amyloid-β42(43) deposit in diffuse plaques. Am J Pathol. 1996;149:1823–30.PubMedPubMedCentral Iwatsubo T, Saido TC, Mann DM, Lee VM, Trojanowski JQ. Full-length amyloid-β(1–42(43)) and amino-terminally modified and truncated amyloid-β42(43) deposit in diffuse plaques. Am J Pathol. 1996;149:1823–30.PubMedPubMedCentral
10.
go back to reference Guzman EA, Bouter Y, Richard BC, Lannfelt L, Ingelsson M, Paetau A, Verkkoniemi-Ahola A, Wirths O, Bayer TA. Abundance of Aβ5–xlike immunoreactivity in transgenic 5XFAD, APP/PS1KI and 3xTG mice, sporadic and familial Alzheimer’s disease. Mol Neurodegener. 2014;9:13.CrossRefPubMedPubMedCentral Guzman EA, Bouter Y, Richard BC, Lannfelt L, Ingelsson M, Paetau A, Verkkoniemi-Ahola A, Wirths O, Bayer TA. Abundance of Aβ5–xlike immunoreactivity in transgenic 5XFAD, APP/PS1KI and 3xTG mice, sporadic and familial Alzheimer’s disease. Mol Neurodegener. 2014;9:13.CrossRefPubMedPubMedCentral
11.
go back to reference Takeda K, Araki W, Akiyama H, Tabira T. Amino-truncated amyloid β-peptide (Aβ5-40/42) produced from caspase-cleaved amyloid precursor protein is deposited in Alzheimer’s disease brain. FASEB J. 2004;18:1755–7.PubMed Takeda K, Araki W, Akiyama H, Tabira T. Amino-truncated amyloid β-peptide (Aβ5-40/42) produced from caspase-cleaved amyloid precursor protein is deposited in Alzheimer’s disease brain. FASEB J. 2004;18:1755–7.PubMed
12.
go back to reference Liu K, Solano I, Mann D, Lemere C, Mercken M, Trojanowski JQ, Lee VM. Characterization of Aβ11-40/42 peptide deposition in Alzheimer’s disease and young Down’s syndrome brains: implication of N-terminally truncated Aβ species in the pathogenesis of Alzheimer’s disease. Acta Neuropathol (Berl). 2006;112:163–74.CrossRef Liu K, Solano I, Mann D, Lemere C, Mercken M, Trojanowski JQ, Lee VM. Characterization of Aβ11-40/42 peptide deposition in Alzheimer’s disease and young Down’s syndrome brains: implication of N-terminally truncated Aβ species in the pathogenesis of Alzheimer’s disease. Acta Neuropathol (Berl). 2006;112:163–74.CrossRef
13.
go back to reference Sullivan CP, Berg EA, Elliott-Bryant R, Fishman JB, McKee AC, Morin PJ, Shia M, Fine RE. Pyroglutamate-Aβ 3 and 11 colocalize in amyloid plaques in Alzheimer’s disease cerebral cortex with pyroglutamate-Aβ 11 forming the central core. Neurosci Lett. 2011;505:109–12.CrossRefPubMedPubMedCentral Sullivan CP, Berg EA, Elliott-Bryant R, Fishman JB, McKee AC, Morin PJ, Shia M, Fine RE. Pyroglutamate-Aβ 3 and 11 colocalize in amyloid plaques in Alzheimer’s disease cerebral cortex with pyroglutamate-Aβ 11 forming the central core. Neurosci Lett. 2011;505:109–12.CrossRefPubMedPubMedCentral
14.
go back to reference Portelius E, Bogdanovic N, Gustavsson MK, Volkmann I, Brinkmalm G, Zetterberg H, Winblad B, Blennow K. Mass spectrometric characterization of brain amyloid β isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathol. 2010;120:185–93.CrossRefPubMedPubMedCentral Portelius E, Bogdanovic N, Gustavsson MK, Volkmann I, Brinkmalm G, Zetterberg H, Winblad B, Blennow K. Mass spectrometric characterization of brain amyloid β isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathol. 2010;120:185–93.CrossRefPubMedPubMedCentral
15.
go back to reference Moore BD, Chakrabarty P, Levites Y, Kukar TL, Baine AM, Moroni T, Ladd TB, Das P, Dickson DW, Golde TE. Overlapping profiles of Aβ peptides in the Alzheimer’s disease and pathological aging brains. Alzheimers Res Ther. 2012;4:18.CrossRefPubMedPubMedCentral Moore BD, Chakrabarty P, Levites Y, Kukar TL, Baine AM, Moroni T, Ladd TB, Das P, Dickson DW, Golde TE. Overlapping profiles of Aβ peptides in the Alzheimer’s disease and pathological aging brains. Alzheimers Res Ther. 2012;4:18.CrossRefPubMedPubMedCentral
17.
go back to reference Bayer TA, Wirths O. Focusing the amyloid cascade hypothesis on N-truncated Aβ peptides as drug targets against Alzheimer’s disease. Acta Neuropathol. 2014;127:787–801.CrossRefPubMedPubMedCentral Bayer TA, Wirths O. Focusing the amyloid cascade hypothesis on N-truncated Aβ peptides as drug targets against Alzheimer’s disease. Acta Neuropathol. 2014;127:787–801.CrossRefPubMedPubMedCentral
18.
go back to reference Pike CJ, Overman MJ, Cotman CW. Amino-terminal deletions enhance aggregation of β-amyloid peptides in vitro. J Biol Chem. 1995;270:23895–8.CrossRefPubMed Pike CJ, Overman MJ, Cotman CW. Amino-terminal deletions enhance aggregation of β-amyloid peptides in vitro. J Biol Chem. 1995;270:23895–8.CrossRefPubMed
19.
go back to reference Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A. 1985;82:4245–9.CrossRefPubMedPubMedCentral Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A. 1985;82:4245–9.CrossRefPubMedPubMedCentral
20.
go back to reference Miller DL, Papayannopoulos IA, Styles J, Bobin SA, Lin YY, Biemann K, Iqbal K. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease. Arch Biochem Biophys. 1993;301:41–52.CrossRefPubMed Miller DL, Papayannopoulos IA, Styles J, Bobin SA, Lin YY, Biemann K, Iqbal K. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease. Arch Biochem Biophys. 1993;301:41–52.CrossRefPubMed
21.
go back to reference Portelius E, Lashley T, Westerlund A, Persson R, Fox NC, Blennow K, Revesz T, Zetterberg H. Brain amyloid-β fragment signatures in pathological ageing and Alzheimer’s disease by hybrid immunoprecipitation mass spectrometry. Neurodegener Dis. 2015;15:50–7.CrossRefPubMed Portelius E, Lashley T, Westerlund A, Persson R, Fox NC, Blennow K, Revesz T, Zetterberg H. Brain amyloid-β fragment signatures in pathological ageing and Alzheimer’s disease by hybrid immunoprecipitation mass spectrometry. Neurodegener Dis. 2015;15:50–7.CrossRefPubMed
22.
go back to reference Oberstein TJ, Spitzer P, Klafki H-W, Linning P, Neff F, Knölker HJ, Lewczuk P, Wiltfang J, Kornhuber J, Maler JM. Astrocytes and microglia but not neurons preferentially generate N-terminally truncated Aβ peptides. Neurobiol Dis. 2015;73:24–35.CrossRefPubMed Oberstein TJ, Spitzer P, Klafki H-W, Linning P, Neff F, Knölker HJ, Lewczuk P, Wiltfang J, Kornhuber J, Maler JM. Astrocytes and microglia but not neurons preferentially generate N-terminally truncated Aβ peptides. Neurobiol Dis. 2015;73:24–35.CrossRefPubMed
23.
go back to reference Haussmann U, Jahn O, Linning P, Janssen C, Liepold T, Portelius E, Zetterberg H, Bauer C, Schuchhardt J, Knolker HJ, et al. Analysis of amino-terminal variants of amyloid-β peptides by capillary isoelectric focusing immunoassay. Anal Chem. 2013;85:8142–9.CrossRefPubMed Haussmann U, Jahn O, Linning P, Janssen C, Liepold T, Portelius E, Zetterberg H, Bauer C, Schuchhardt J, Knolker HJ, et al. Analysis of amino-terminal variants of amyloid-β peptides by capillary isoelectric focusing immunoassay. Anal Chem. 2013;85:8142–9.CrossRefPubMed
24.
go back to reference Wiltfang J, Esselmann H, Cupers P, Neumann M, Kretzschmar H, Beyermann M, Schleuder D, Jahn H, Ruther E, Kornhuber J, et al. Elevation of β-amyloid peptide 2-42 in sporadic and familial Alzheimer’s disease and its generation in PS1 knockout cells. J Biol Chem. 2001;276:42645–57.CrossRefPubMed Wiltfang J, Esselmann H, Cupers P, Neumann M, Kretzschmar H, Beyermann M, Schleuder D, Jahn H, Ruther E, Kornhuber J, et al. Elevation of β-amyloid peptide 2-42 in sporadic and familial Alzheimer’s disease and its generation in PS1 knockout cells. J Biol Chem. 2001;276:42645–57.CrossRefPubMed
25.
go back to reference Hahn S, Bruning T, Ness J, Czirr E, Baches S, Gijsen H, Korth C, Pietrzik CU, Bulic B, Weggen S. Presenilin-1 but not amyloid precursor protein mutations present in mouse models of Alzheimer’s disease attenuate the response of cultured cells to γ-secretase modulators regardless of their potency and structure. J Neurochem. 2011;116:385–95.CrossRefPubMed Hahn S, Bruning T, Ness J, Czirr E, Baches S, Gijsen H, Korth C, Pietrzik CU, Bulic B, Weggen S. Presenilin-1 but not amyloid precursor protein mutations present in mouse models of Alzheimer’s disease attenuate the response of cultured cells to γ-secretase modulators regardless of their potency and structure. J Neurochem. 2011;116:385–95.CrossRefPubMed
26.
go back to reference Casas C, Sergeant N, Itier JM, Blanchard V, Wirths O, van der Kolk N, Vingtdeux V, van de Steeg E, Ret G, Canton T, et al. Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Aβ 42 accumulation in a novel Alzheimer transgenic model. Am J Pathol. 2004;165:1289–300.CrossRefPubMedPubMedCentral Casas C, Sergeant N, Itier JM, Blanchard V, Wirths O, van der Kolk N, Vingtdeux V, van de Steeg E, Ret G, Canton T, et al. Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Aβ 42 accumulation in a novel Alzheimer transgenic model. Am J Pathol. 2004;165:1289–300.CrossRefPubMedPubMedCentral
27.
go back to reference Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O. Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging. 2012;33:196. e129–40.CrossRefPubMed Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O. Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging. 2012;33:196. e129–40.CrossRefPubMed
28.
go back to reference Richard BC, Kurdakova A, Baches S, Bayer TA, Weggen S, Wirths O. Gene dosage dependent aggravation of the neurological phenotype in the 5XFAD mouse model of Alzheimer’s disease. J Alzheimers Dis. 2015;45:1223–36.PubMed Richard BC, Kurdakova A, Baches S, Bayer TA, Weggen S, Wirths O. Gene dosage dependent aggravation of the neurological phenotype in the 5XFAD mouse model of Alzheimer’s disease. J Alzheimers Dis. 2015;45:1223–36.PubMed
29.
go back to reference Brockhaus M, Grunberg J, Rohrig S, Loetscher H, Wittenburg N, Baumeister R, Jacobsen H, Haass C. Caspase-mediated cleavage is not required for the activity of presenilins in amyloidogenesis and NOTCH signaling. Neuroreport. 1998;9:1481–6.CrossRefPubMed Brockhaus M, Grunberg J, Rohrig S, Loetscher H, Wittenburg N, Baumeister R, Jacobsen H, Haass C. Caspase-mediated cleavage is not required for the activity of presenilins in amyloidogenesis and NOTCH signaling. Neuroreport. 1998;9:1481–6.CrossRefPubMed
30.
go back to reference Antonios G, Saiepour N, Bouter Y, Richard B, Paetau A, Verkkoniemi-Ahola A, Lannfelt L, Ingelsson M, Kovacs G, Pillot T, et al. N-truncated Aβ starting with position four: early intraneuronal accumulation and rescue of toxicity using NT4X-167, a novel monoclonal antibody. Acta Neuropathol Commun. 2013;1:56.CrossRefPubMedPubMedCentral Antonios G, Saiepour N, Bouter Y, Richard B, Paetau A, Verkkoniemi-Ahola A, Lannfelt L, Ingelsson M, Kovacs G, Pillot T, et al. N-truncated Aβ starting with position four: early intraneuronal accumulation and rescue of toxicity using NT4X-167, a novel monoclonal antibody. Acta Neuropathol Commun. 2013;1:56.CrossRefPubMedPubMedCentral
31.
go back to reference Sergeant N, Bombois S, Ghestem A, Drobecq H, Kostanjevecki V, Missiaen C, Wattez A, David JP, Vanmechelen E, Sergheraert C, Delacourte A. Truncated β-amyloid peptide species in pre-clinical Alzheimer’s disease as new targets for the vaccination approach. J Neurochem. 2003;85:1581–91.CrossRefPubMed Sergeant N, Bombois S, Ghestem A, Drobecq H, Kostanjevecki V, Missiaen C, Wattez A, David JP, Vanmechelen E, Sergheraert C, Delacourte A. Truncated β-amyloid peptide species in pre-clinical Alzheimer’s disease as new targets for the vaccination approach. J Neurochem. 2003;85:1581–91.CrossRefPubMed
32.
go back to reference Wirths O, Multhaup G, Czech C, Blanchard V, Moussaoui S, Tremp G, Pradier L, Beyreuther K, Bayer TA. Intraneuronal Aβ accumulation precedes plaque formation in β-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett. 2001;306:116–20.CrossRefPubMed Wirths O, Multhaup G, Czech C, Blanchard V, Moussaoui S, Tremp G, Pradier L, Beyreuther K, Bayer TA. Intraneuronal Aβ accumulation precedes plaque formation in β-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett. 2001;306:116–20.CrossRefPubMed
33.
go back to reference Bouter Y, Dietrich K, Wittnam JL, Rezaei-Ghaleh N, Pillot T, Papot-Couturier S, Lefebvre T, Sprenger F, Wirths O, Zweckstetter M, Bayer TA. N-truncated amyloid β (Aβ) 4-42 forms stable aggregates and induces acute and long-lasting behavioral deficits. Acta Neuropathol. 2013;126:189–205.CrossRefPubMedPubMedCentral Bouter Y, Dietrich K, Wittnam JL, Rezaei-Ghaleh N, Pillot T, Papot-Couturier S, Lefebvre T, Sprenger F, Wirths O, Zweckstetter M, Bayer TA. N-truncated amyloid β (Aβ) 4-42 forms stable aggregates and induces acute and long-lasting behavioral deficits. Acta Neuropathol. 2013;126:189–205.CrossRefPubMedPubMedCentral
34.
go back to reference Lewis H, Beher D, Cookson N, Oakley A, Piggott M, Morris CM, Jaros E, Perry R, Ince P, Kenny RA, et al. Quantification of Alzheimer pathology in ageing and dementia: age-related accumulation of amyloid-β(42) peptide in vascular dementia. Neuropathol Appl Neurobiol. 2006;32:103–18.CrossRefPubMed Lewis H, Beher D, Cookson N, Oakley A, Piggott M, Morris CM, Jaros E, Perry R, Ince P, Kenny RA, et al. Quantification of Alzheimer pathology in ageing and dementia: age-related accumulation of amyloid-β(42) peptide in vascular dementia. Neuropathol Appl Neurobiol. 2006;32:103–18.CrossRefPubMed
35.
go back to reference Kuo YM, Kokjohn TA, Beach TG, Sue LI, Brune D, Lopez JC, Kalback WM, Abramowski D, Sturchler-Pierrat C, Staufenbiel M, Roher AE. Comparative analysis of amyloid-β chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer’s disease brains. J Biol Chem. 2001;276:12991–8.CrossRefPubMed Kuo YM, Kokjohn TA, Beach TG, Sue LI, Brune D, Lopez JC, Kalback WM, Abramowski D, Sturchler-Pierrat C, Staufenbiel M, Roher AE. Comparative analysis of amyloid-β chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer’s disease brains. J Biol Chem. 2001;276:12991–8.CrossRefPubMed
36.
go back to reference Kalback W, Watson MD, Kokjohn TA, Kuo YM, Weiss N, Luehrs DC, Lopez J, Brune D, Sisodia SS, Staufenbiel M, et al. APP transgenic mice Tg2576 accumulate Aβ peptides that are distinct from the chemically modified and insoluble peptides deposited in Alzheimer’s disease senile plaques. Biochemistry. 2002;41:922–8.CrossRefPubMed Kalback W, Watson MD, Kokjohn TA, Kuo YM, Weiss N, Luehrs DC, Lopez J, Brune D, Sisodia SS, Staufenbiel M, et al. APP transgenic mice Tg2576 accumulate Aβ peptides that are distinct from the chemically modified and insoluble peptides deposited in Alzheimer’s disease senile plaques. Biochemistry. 2002;41:922–8.CrossRefPubMed
37.
go back to reference Sevalle J, Amoyel A, Robert P, Fournie-Zaluski MC, Roques B, Checler F. Aminopeptidase A contributes to the N-terminal truncation of amyloid β-peptide. J Neurochem. 2009;109:248–56.CrossRefPubMed Sevalle J, Amoyel A, Robert P, Fournie-Zaluski MC, Roques B, Checler F. Aminopeptidase A contributes to the N-terminal truncation of amyloid β-peptide. J Neurochem. 2009;109:248–56.CrossRefPubMed
38.
go back to reference Bien J, Jefferson T, Čaušević M, Jumpertz T, Munter L, Multhaup G, Weggen S, Becker-Pauly C, Pietrzik CU. The metalloprotease meprin β generates amino terminal-truncated amyloid β peptide species. J Biol Chem. 2012;287:33304–13.CrossRefPubMedPubMedCentral Bien J, Jefferson T, Čaušević M, Jumpertz T, Munter L, Multhaup G, Weggen S, Becker-Pauly C, Pietrzik CU. The metalloprotease meprin β generates amino terminal-truncated amyloid β peptide species. J Biol Chem. 2012;287:33304–13.CrossRefPubMedPubMedCentral
39.
go back to reference Lyons B, Friedrich MG, Raftery MJ, Truscott RJW. Amyloid plaque in the human brain can decompose from Aβ1-40/1-42 by spontaneous non-enzymatic processes. Anal Chem. 2016;88(5):2675–84.CrossRefPubMed Lyons B, Friedrich MG, Raftery MJ, Truscott RJW. Amyloid plaque in the human brain can decompose from Aβ1-40/1-42 by spontaneous non-enzymatic processes. Anal Chem. 2016;88(5):2675–84.CrossRefPubMed
40.
go back to reference Rudinskiy N, Fuerer C, Demurtas D, Zamorano S, De Piano C, Herrmann AG, Spires-Jones TL, Oeckl P, Otto M, Frosch MP, et al. Amyloid-β oligomerization is associated with the generation of a typical peptide fragment fingerprint. Alzheimers Dement. 2016;12:996–1013.CrossRefPubMed Rudinskiy N, Fuerer C, Demurtas D, Zamorano S, De Piano C, Herrmann AG, Spires-Jones TL, Oeckl P, Otto M, Frosch MP, et al. Amyloid-β oligomerization is associated with the generation of a typical peptide fragment fingerprint. Alzheimers Dement. 2016;12:996–1013.CrossRefPubMed
Metadata
Title
N-truncated Aβ4–x peptides in sporadic Alzheimer’s disease cases and transgenic Alzheimer mouse models
Authors
Oliver Wirths
Susanne Walter
Inga Kraus
Hans W. Klafki
Martina Stazi
Timo J. Oberstein
Jorge Ghiso
Jens Wiltfang
Thomas A. Bayer
Sascha Weggen
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2017
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-017-0309-z

Other articles of this Issue 1/2017

Alzheimer's Research & Therapy 1/2017 Go to the issue