Skip to main content
Top
Published in: BMC Sports Science, Medicine and Rehabilitation 1/2018

Open Access 01-12-2018 | Study protocol

A protocol to prospectively assess risk factors for medial tibial stress syndrome in distance runners

Published in: BMC Sports Science, Medicine and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Background

Medial tibial stress syndrome (MTSS) is a lower leg injury with a reported incidence rate of up to 35% in active individuals. Although numerous prospective studies have tried to identify risk factors for developing MTSS, managing the syndrome remains difficult. One risk factor yet to be extensively explored in MTSS development is reduced lower leg girth. Further investigation of reduced lower leg girth is required due to the important role lower leg musculature plays in attenuating ground reaction forces during the gait cycle. Therefore, the primary aim of this study is to ascertain whether lower leg muscle morphology and function contribute to the development of MTSS. Our ultimate aim is to identify potential risk factors for MTSS that can be targeted in future studies to better manage the injury or, preferably, prevent individuals developing MTSS.

Methods

This study will be prospective in design and will recruit asymptomatic distance runners. All participants will be tested at base line and participants will have their training data longitudinally tracked over the following 12 months to assess any individuals who develop MTSS symptoms. At base line, outcome measures will include bilateral measures of lower limb anthropometry; cross sectional area (CSA) and thickness of the tibialis anterior, peroneals, flexor digitorum longus, flexor hallucis longus and thickness of soleus, medial and lateral head of gastrocnemius. Tibial bone speed of sound, ankle dorsiflexion range of motion, strength of the six previously described muscles, foot alignment and ankle plantar flexor endurance will also be assessed. Participants will also complete a treadmill running protocol where three-dimensional kinematics, plantar pressure distribution and electromyography data will be collected.

Discussion

This study will aim to identify characteristics of individuals who develop MTSS and, in turn, identify modifiable risk factors that can be targeted to prevent individuals developing this injury.
Literature
1.
go back to reference Moen MH, Tol JL, Weir A, Steunebrink M, De Winter TC. Medial tibial stress syndrome a critical review. Sports Med. 2009;39:523–46.CrossRef Moen MH, Tol JL, Weir A, Steunebrink M, De Winter TC. Medial tibial stress syndrome a critical review. Sports Med. 2009;39:523–46.CrossRef
2.
go back to reference Yates B, White S. The incidence and risk factors in the development of medial tibial stress syndrome among naval recruits. Am J Sports Med. 2004;32:772–80.CrossRef Yates B, White S. The incidence and risk factors in the development of medial tibial stress syndrome among naval recruits. Am J Sports Med. 2004;32:772–80.CrossRef
3.
go back to reference Bennett JE, Reinking MF, Pluemer B, Pentel A, Seaton M, Killian C. Factors contributing to the development of medial tibial stress syndrome in high school runners. J Orthop Sports Phys Ther. 2001;31:504–10.CrossRef Bennett JE, Reinking MF, Pluemer B, Pentel A, Seaton M, Killian C. Factors contributing to the development of medial tibial stress syndrome in high school runners. J Orthop Sports Phys Ther. 2001;31:504–10.CrossRef
4.
go back to reference Newman P, Waddington G, Adams R. Shockwave treatment for medial tibial stress syndrome: a randomized double blind sham-controlled pilot trial. J Sci Med Sport. 2017;20:220–4.CrossRef Newman P, Waddington G, Adams R. Shockwave treatment for medial tibial stress syndrome: a randomized double blind sham-controlled pilot trial. J Sci Med Sport. 2017;20:220–4.CrossRef
5.
go back to reference Beck BR. Tibial stress injuries - an aetiological review for the purposes of guiding management. Sports Med. 1998;26:265–79.CrossRef Beck BR. Tibial stress injuries - an aetiological review for the purposes of guiding management. Sports Med. 1998;26:265–79.CrossRef
6.
go back to reference Magnusson HI, Westlin NE, Nyqvist F, Gardsell P, Seeman E, Karlsson MK. Abnormally decreased regional bone density in athletes with medial tibial stress syndrome. Am J Sports Med. 2001;29:712–5.CrossRef Magnusson HI, Westlin NE, Nyqvist F, Gardsell P, Seeman E, Karlsson MK. Abnormally decreased regional bone density in athletes with medial tibial stress syndrome. Am J Sports Med. 2001;29:712–5.CrossRef
7.
go back to reference Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med. 1995;23:472–81.CrossRef Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med. 1995;23:472–81.CrossRef
8.
go back to reference Gaeta M, Minutoli F, Scribano E, Ascenti G, Vinci S, Magaudda L, Bruschetta D, Blandino A. CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology. 2005;235:553–61.CrossRef Gaeta M, Minutoli F, Scribano E, Ascenti G, Vinci S, Magaudda L, Bruschetta D, Blandino A. CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology. 2005;235:553–61.CrossRef
9.
go back to reference Judex S, Gross TS, Zernicke RF. Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton. J Bone Miner Res. 1997;12:1737–45.CrossRef Judex S, Gross TS, Zernicke RF. Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton. J Bone Miner Res. 1997;12:1737–45.CrossRef
10.
go back to reference Milgrom C, Giladi M, Simkin A, Rand N, Kedem R, Kashtan H, Stein M, Gomori M. The area moment of inertia of the tibia: a risk factor for stress fractures. J Biomech. 1989;22:1243–8.CrossRef Milgrom C, Giladi M, Simkin A, Rand N, Kedem R, Kashtan H, Stein M, Gomori M. The area moment of inertia of the tibia: a risk factor for stress fractures. J Biomech. 1989;22:1243–8.CrossRef
11.
go back to reference Newman P, Witchalls J, Waddington G, Adams R. Risk factors associated with medial tibial stress syndrome in runners: a systematic review and meta-analysis. Open Access J Sports Med. 2013;4:229–41.CrossRef Newman P, Witchalls J, Waddington G, Adams R. Risk factors associated with medial tibial stress syndrome in runners: a systematic review and meta-analysis. Open Access J Sports Med. 2013;4:229–41.CrossRef
12.
go back to reference Reshef N, Guelich DR. Medial tibial stress syndrome. Clin Sports Med. 2012;31:273–90.CrossRef Reshef N, Guelich DR. Medial tibial stress syndrome. Clin Sports Med. 2012;31:273–90.CrossRef
13.
go back to reference Plisky MS, Rauh MJ, Heiderscheit B, Underwood FB, Tank RT. Medial tibial stress syndrome in high school cross-country runners: incidence and risk factors. J Orthop Sports Phys Ther. 2007;37:40–7.CrossRef Plisky MS, Rauh MJ, Heiderscheit B, Underwood FB, Tank RT. Medial tibial stress syndrome in high school cross-country runners: incidence and risk factors. J Orthop Sports Phys Ther. 2007;37:40–7.CrossRef
14.
go back to reference Burne SG, Khan KM, Boudville PB, Mallet RJ, Newman PM, Steinman LJ, Thornton E. Risk factors associated with exertional medial tibial pain: a 12 month prospective clinical study. Br J Sports Med. 2004;38:441–5.CrossRef Burne SG, Khan KM, Boudville PB, Mallet RJ, Newman PM, Steinman LJ, Thornton E. Risk factors associated with exertional medial tibial pain: a 12 month prospective clinical study. Br J Sports Med. 2004;38:441–5.CrossRef
15.
go back to reference Yagi S, Muneta T, Sekiya I. Incidence and risk factors for medial tibial stress syndrome and tibial stress fracture in high school runners. Knee Surg Sports Traumatol Arthrosc. 2013;21:556–63.CrossRef Yagi S, Muneta T, Sekiya I. Incidence and risk factors for medial tibial stress syndrome and tibial stress fracture in high school runners. Knee Surg Sports Traumatol Arthrosc. 2013;21:556–63.CrossRef
16.
go back to reference Moen MH, Bongers T, Bakker EW, Zimmermann WO, Weir A, Tol JL, Backx FJG. Risk factors and prognostic indicators for medial tibial stress syndrome. Scand J Med Sci Sports. 2012;22:34–9.CrossRef Moen MH, Bongers T, Bakker EW, Zimmermann WO, Weir A, Tol JL, Backx FJG. Risk factors and prognostic indicators for medial tibial stress syndrome. Scand J Med Sci Sports. 2012;22:34–9.CrossRef
17.
go back to reference Sharma J, Golby J, Greeves J, Spears IR. Biomechanical and lifestyle risk factors for medial tibia stress syndrome in army recruits: a prospective study. Gait Posture. 2011;33:361–5.CrossRef Sharma J, Golby J, Greeves J, Spears IR. Biomechanical and lifestyle risk factors for medial tibia stress syndrome in army recruits: a prospective study. Gait Posture. 2011;33:361–5.CrossRef
18.
go back to reference Hamstra-Wright KL, Bliven KCH, Bay C. Risk factors for medial tibial stress syndrome in physically active individuals such as runners and military personnel: a systematic review and meta-analysis. Br J Sports Med. 2015;49:362–9.CrossRef Hamstra-Wright KL, Bliven KCH, Bay C. Risk factors for medial tibial stress syndrome in physically active individuals such as runners and military personnel: a systematic review and meta-analysis. Br J Sports Med. 2015;49:362–9.CrossRef
19.
go back to reference Hubbard TJ, Carpenter EM, Cordova ML. Contributing factors to medial tibial stress syndrome: a prospective investigation. Med Sci Sports Exerc. 2009;41:490–6.CrossRef Hubbard TJ, Carpenter EM, Cordova ML. Contributing factors to medial tibial stress syndrome: a prospective investigation. Med Sci Sports Exerc. 2009;41:490–6.CrossRef
20.
go back to reference Winters M, Eskes M, Weir A, Moen MH, Backx FJG, Bakker EWP. Treatment of medial tibial stress syndrome: a systematic review. Sports Med. 2013;43:1315–33.CrossRef Winters M, Eskes M, Weir A, Moen MH, Backx FJG, Bakker EWP. Treatment of medial tibial stress syndrome: a systematic review. Sports Med. 2013;43:1315–33.CrossRef
21.
go back to reference Wakeling JM, Nigg BM, Rozitis AI. Muscle activity damps the soft tissue resonance that occurs in response to pulsed and continuous vibrations. J Appl Physiol. 2002;93:1093–103.CrossRef Wakeling JM, Nigg BM, Rozitis AI. Muscle activity damps the soft tissue resonance that occurs in response to pulsed and continuous vibrations. J Appl Physiol. 2002;93:1093–103.CrossRef
22.
go back to reference Bennell KL, Malcolm SA, Thomas SA, Reid SJ, Brukner PD, Ebeling PR, Wark JD. Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am J Sports Med. 1996;24:810–8.CrossRef Bennell KL, Malcolm SA, Thomas SA, Reid SJ, Brukner PD, Ebeling PR, Wark JD. Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am J Sports Med. 1996;24:810–8.CrossRef
23.
go back to reference Clement DB. Tibial stress syndrome in athletes. J Sports Med. 1974;2:81–5.CrossRef Clement DB. Tibial stress syndrome in athletes. J Sports Med. 1974;2:81–5.CrossRef
24.
go back to reference Madeley LT, Munteanu SE, Bonanno DR. Endurance of the ankle joint plantar flexor muscles in athletes with medial tibial stress syndrome: a case-control study. J Sci Med Sport. 2007;10:356–62.CrossRef Madeley LT, Munteanu SE, Bonanno DR. Endurance of the ankle joint plantar flexor muscles in athletes with medial tibial stress syndrome: a case-control study. J Sci Med Sport. 2007;10:356–62.CrossRef
25.
go back to reference Brukner P, Kahn KM. Brukner and Khan’s clinical sports medicine. 4th ed. Sydney: McGraw-Hill; 2012. Brukner P, Kahn KM. Brukner and Khan’s clinical sports medicine. 4th ed. Sydney: McGraw-Hill; 2012.
26.
go back to reference Appell HJ. Muscular atrophy following immobilisation. A review. Sports Med. 1990;10:42–58.CrossRef Appell HJ. Muscular atrophy following immobilisation. A review. Sports Med. 1990;10:42–58.CrossRef
27.
go back to reference MacLean C, Davis IM, Hamill J. Influence of a custom foot orthotic intervention on lower extremity dynamics in healthy runners. Clin Biomech. 2006;21:623–30.CrossRef MacLean C, Davis IM, Hamill J. Influence of a custom foot orthotic intervention on lower extremity dynamics in healthy runners. Clin Biomech. 2006;21:623–30.CrossRef
28.
go back to reference Milner CE, Davis IS, Hamill J. Free moment as a predictor of tibial stress fracture in distance runners. J Biomech. 2006;39:2819–25.CrossRef Milner CE, Davis IS, Hamill J. Free moment as a predictor of tibial stress fracture in distance runners. J Biomech. 2006;39:2819–25.CrossRef
29.
go back to reference Stewart A, Marfell-Jones M, Olds T, Ridder H. International standards for anthropometric assessment. New Zealand: The International Society for the Advancement of Kinanthropometry; 2011. Stewart A, Marfell-Jones M, Olds T, Ridder H. International standards for anthropometric assessment. New Zealand: The International Society for the Advancement of Kinanthropometry; 2011.
30.
go back to reference Capranica L, Cama G, Fanton F, Tessitore A, Figura F. Force and power of preferred and non-preferred leg in young soccer players. J Sports Med Phys Fit. 1992;32:358–63. Capranica L, Cama G, Fanton F, Tessitore A, Figura F. Force and power of preferred and non-preferred leg in young soccer players. J Sports Med Phys Fit. 1992;32:358–63.
31.
go back to reference Crofts G, Angin S, Mickle KJ, Hill S, Nester CJ. Reliability of ultrasound for measurement of selected foot structures. Gait Posture. 2014;39:35–9.CrossRef Crofts G, Angin S, Mickle KJ, Hill S, Nester CJ. Reliability of ultrasound for measurement of selected foot structures. Gait Posture. 2014;39:35–9.CrossRef
32.
go back to reference Weiss LW, Clark FC. Ultrasonic protocols for separately measuring subcutaneous fat and skeletal muscle thickness in the calf area. Phys Ther. 1985;65:477–81.CrossRef Weiss LW, Clark FC. Ultrasonic protocols for separately measuring subcutaneous fat and skeletal muscle thickness in the calf area. Phys Ther. 1985;65:477–81.CrossRef
33.
go back to reference McCreesh K, Egan S. Ultrasound measurement of the size of the anterior tibial muscle group: the effect of exercise and leg dominance. Sports Med Arthrosc Rehabil Ther Technol. 2011;3:18.CrossRef McCreesh K, Egan S. Ultrasound measurement of the size of the anterior tibial muscle group: the effect of exercise and leg dominance. Sports Med Arthrosc Rehabil Ther Technol. 2011;3:18.CrossRef
34.
go back to reference Mickle KJ, Nester CJ, Crofts G, Steele JR. Reliability of ultrasound to measure morphology of the toe flexor muscles. J Foot Ankle Res. 2013;6:12.CrossRef Mickle KJ, Nester CJ, Crofts G, Steele JR. Reliability of ultrasound to measure morphology of the toe flexor muscles. J Foot Ankle Res. 2013;6:12.CrossRef
35.
go back to reference Bauer DC, Gluer CC, Cauley JA, Vogt TM, Ensrud KE, Genant HK, Black DM. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women: a prospective study. Arch Intern Med. 1997;157:629–34.CrossRef Bauer DC, Gluer CC, Cauley JA, Vogt TM, Ensrud KE, Genant HK, Black DM. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women: a prospective study. Arch Intern Med. 1997;157:629–34.CrossRef
36.
go back to reference Stewart A, Torgerson DJ, Reid DM. Prediction of fractures in perimenopausal women: a comparison of dual energy x ray absorptiometry and broadband ultrasound attenuation. Ann Rheum Dis. 1996;55:140–2.CrossRef Stewart A, Torgerson DJ, Reid DM. Prediction of fractures in perimenopausal women: a comparison of dual energy x ray absorptiometry and broadband ultrasound attenuation. Ann Rheum Dis. 1996;55:140–2.CrossRef
37.
go back to reference Frost ML, Blake GM, Fogelman I. Quantitative ultrasound and bone mineral density are equally strongly associated with risk factors for osteoporosis. J Bone Miner Res. 2001;16:406–16.CrossRef Frost ML, Blake GM, Fogelman I. Quantitative ultrasound and bone mineral density are equally strongly associated with risk factors for osteoporosis. J Bone Miner Res. 2001;16:406–16.CrossRef
38.
go back to reference Bennell KL, Talbot RC, Wajswelner H, Techovanich W, Kelly DH, Hall AJ. Intra-rater and inter-rater reliability of a weight-bearing lunge measure of ankle dorsiflexion. Aust J Physiother. 1998;44:175–80.CrossRef Bennell KL, Talbot RC, Wajswelner H, Techovanich W, Kelly DH, Hall AJ. Intra-rater and inter-rater reliability of a weight-bearing lunge measure of ankle dorsiflexion. Aust J Physiother. 1998;44:175–80.CrossRef
39.
go back to reference Ota S, Ueda M, Aimoto K, Suzuki Y, Sigward SM. Acute influence of restricted ankle dorsiflexion angle on knee joint mechanics during gait. Knee. 2014;21:669–75.CrossRef Ota S, Ueda M, Aimoto K, Suzuki Y, Sigward SM. Acute influence of restricted ankle dorsiflexion angle on knee joint mechanics during gait. Knee. 2014;21:669–75.CrossRef
40.
go back to reference Kendall F, McCreary E, Provance P, Rodgers M, Romani W. Muscle testing and function with posture and pain. 5th ed. Baltimore: Lippincott Williams and Wilkins; 2005. Kendall F, McCreary E, Provance P, Rodgers M, Romani W. Muscle testing and function with posture and pain. 5th ed. Baltimore: Lippincott Williams and Wilkins; 2005.
42.
go back to reference Redmond AC, Crosbie J, Ouvrier RA. Development and validation of a novel rating system for scoring standing foot posture: the foot posture index. Clin Biomech. 2006;21:89–98.CrossRef Redmond AC, Crosbie J, Ouvrier RA. Development and validation of a novel rating system for scoring standing foot posture: the foot posture index. Clin Biomech. 2006;21:89–98.CrossRef
43.
go back to reference Pohl MB, Lloyd C, Ferber R. Can the reliability of three-dimensional running kinematics be improved using functional joint methodology? Gait Posture. 2010;32:559–63.CrossRef Pohl MB, Lloyd C, Ferber R. Can the reliability of three-dimensional running kinematics be improved using functional joint methodology? Gait Posture. 2010;32:559–63.CrossRef
44.
go back to reference Willems TM, Witvrouw E, De Cock A, De Clercq D. Gait-related risk factors for exercise-related lower-leg pain during shod running. Med Sci Sports Exerc. 2007;39:330–9.CrossRef Willems TM, Witvrouw E, De Cock A, De Clercq D. Gait-related risk factors for exercise-related lower-leg pain during shod running. Med Sci Sports Exerc. 2007;39:330–9.CrossRef
45.
go back to reference Hardin EC, Van den Bogert AJ, Hamill J. Kinematic adaptations during running: effects of footwear, surface, and duration. Med Sci Sports Exerc. 2004;36:838–44.CrossRef Hardin EC, Van den Bogert AJ, Hamill J. Kinematic adaptations during running: effects of footwear, surface, and duration. Med Sci Sports Exerc. 2004;36:838–44.CrossRef
46.
go back to reference Peter A, Hegyi A, Stenroth L, Finni T, Cronin NJ. EMG force production of the flexor hallucis longus muscle in isometric plantarflexion and the push-off phase of walking. J Biomech. 2015;48:3413–9.CrossRef Peter A, Hegyi A, Stenroth L, Finni T, Cronin NJ. EMG force production of the flexor hallucis longus muscle in isometric plantarflexion and the push-off phase of walking. J Biomech. 2015;48:3413–9.CrossRef
47.
go back to reference Basmajian JV, De Luca CJ. Muscles alive: their functions revealed by electromyography. 5th ed. Baltimore: Williams & Wilkins; 1985. Basmajian JV, De Luca CJ. Muscles alive: their functions revealed by electromyography. 5th ed. Baltimore: Williams & Wilkins; 1985.
48.
go back to reference Wild CY, Steele JR, Munro BJ. Insufficient hamstring strength compromises landing technique in adolescent girls. Med Sci Sports Exerc. 2013;45:497–505.CrossRef Wild CY, Steele JR, Munro BJ. Insufficient hamstring strength compromises landing technique in adolescent girls. Med Sci Sports Exerc. 2013;45:497–505.CrossRef
49.
go back to reference Wyndow N, Cowan SM, Wrigley TV, Crossley KM. Triceps surae activation is altered in male runners with Achilles tendinopathy. J Electromyogr Kinesiol. 2013;23:166–72.CrossRef Wyndow N, Cowan SM, Wrigley TV, Crossley KM. Triceps surae activation is altered in male runners with Achilles tendinopathy. J Electromyogr Kinesiol. 2013;23:166–72.CrossRef
50.
go back to reference Leonard JA, Brown RH, Stapley PJ. Reaching to multiple targets when standing: the spatial organization of feedforward postural adjustments. J Neurophysiol. 2009;101:2120–33.CrossRef Leonard JA, Brown RH, Stapley PJ. Reaching to multiple targets when standing: the spatial organization of feedforward postural adjustments. J Neurophysiol. 2009;101:2120–33.CrossRef
51.
go back to reference Cavanagh PR, Ulbrecht JS. Clinical plantar pressure measurement in diabetes: rationale and methodology. Foot. 1994;4:123–35.CrossRef Cavanagh PR, Ulbrecht JS. Clinical plantar pressure measurement in diabetes: rationale and methodology. Foot. 1994;4:123–35.CrossRef
52.
go back to reference Ross MD, Fontenot EG. Test-retest reliability of the standing heel-rise test. J Sport Rehabil. 2000;9:117–23.CrossRef Ross MD, Fontenot EG. Test-retest reliability of the standing heel-rise test. J Sport Rehabil. 2000;9:117–23.CrossRef
54.
go back to reference Moen MH, Holtslag L, Bakker E, Barten C, Weir A, Tol JL, Backx F. The treatment of medial tibial stress syndrome in athletes, a randomized clinical trial. Sports Med Arthrosc Rehabil Ther Technol. 2012;4:12. Moen MH, Holtslag L, Bakker E, Barten C, Weir A, Tol JL, Backx F. The treatment of medial tibial stress syndrome in athletes, a randomized clinical trial. Sports Med Arthrosc Rehabil Ther Technol. 2012;4:12.
56.
go back to reference Akiyama K, Noh B, Fukano M, Miyakawa S, Hirose N, Fukubayashi T. Analysis of the talocrural and subtalar joint motions in patients with medial tibial stress syndrome. J Foot Ankle Res. 2015;8:25.CrossRef Akiyama K, Noh B, Fukano M, Miyakawa S, Hirose N, Fukubayashi T. Analysis of the talocrural and subtalar joint motions in patients with medial tibial stress syndrome. J Foot Ankle Res. 2015;8:25.CrossRef
57.
go back to reference Noh B, Masunari A, Akiyama K, Fukano M, Fukubayashi T, Miyakawa S. Structural deformation of longitudinal arches during running in soccer players with medial tibial stress syndrome. Eur J Sport Sci. 2015;15:173–81.CrossRef Noh B, Masunari A, Akiyama K, Fukano M, Fukubayashi T, Miyakawa S. Structural deformation of longitudinal arches during running in soccer players with medial tibial stress syndrome. Eur J Sport Sci. 2015;15:173–81.CrossRef
58.
go back to reference Bandholm T, Boysen L, Haugaard S, Zebis MK, Bencke J. Foot medial longitudinal-arch deformation during quiet standing and gait in subjects with medial tibial stress syndrome. J Foot Ankle Surg. 2008;47:89–95.CrossRef Bandholm T, Boysen L, Haugaard S, Zebis MK, Bencke J. Foot medial longitudinal-arch deformation during quiet standing and gait in subjects with medial tibial stress syndrome. J Foot Ankle Surg. 2008;47:89–95.CrossRef
59.
go back to reference Willems TM, De Clercq D, Delbaere K, Vanderstraeten G, De Cock A, Witvrouw E. A prospective study of gait related risk factors for exercise-related lower leg pain. Gait Posture. 2006;23:91–8.CrossRef Willems TM, De Clercq D, Delbaere K, Vanderstraeten G, De Cock A, Witvrouw E. A prospective study of gait related risk factors for exercise-related lower leg pain. Gait Posture. 2006;23:91–8.CrossRef
60.
go back to reference Rathleff MS, Samani A, Olesen CG, Kersting UG, Madeleine P. Inverse relationship between the complexity of midfoot kinematics and muscle activation in patients with medial tibial stress syndrome. J Electromyogr Kinesiol. 2011;21:638–44.CrossRef Rathleff MS, Samani A, Olesen CG, Kersting UG, Madeleine P. Inverse relationship between the complexity of midfoot kinematics and muscle activation in patients with medial tibial stress syndrome. J Electromyogr Kinesiol. 2011;21:638–44.CrossRef
61.
go back to reference Tweed JL, Campbell JA, Avil SJ. Biomechanical risk factors in the development of medial Tibial stress syndrome in distance runners. J Am Podiatr Med Assoc. 2008;98:436–44.CrossRef Tweed JL, Campbell JA, Avil SJ. Biomechanical risk factors in the development of medial Tibial stress syndrome in distance runners. J Am Podiatr Med Assoc. 2008;98:436–44.CrossRef
62.
go back to reference Yuksel O, Ozgurbuz C, Ergun M, Islegen C, Taskiran E, Denerel N, Ertat A. Inversion/eversion strength dysbalance in patients with medial tibial stress syndrome. J Sport Sci Med. 2011;10:737–42. Yuksel O, Ozgurbuz C, Ergun M, Islegen C, Taskiran E, Denerel N, Ertat A. Inversion/eversion strength dysbalance in patients with medial tibial stress syndrome. J Sport Sci Med. 2011;10:737–42.
63.
go back to reference Saeki J, Nakamura M, Nakao S, Fujita K, Yanase K, Morishita K, Ichihashi N. Ankle and toe muscle strength characteristics in runners with a history of medial tibial stress syndrome. J Foot Ankle Res. 2017;10:16.CrossRef Saeki J, Nakamura M, Nakao S, Fujita K, Yanase K, Morishita K, Ichihashi N. Ankle and toe muscle strength characteristics in runners with a history of medial tibial stress syndrome. J Foot Ankle Res. 2017;10:16.CrossRef
Metadata
Title
A protocol to prospectively assess risk factors for medial tibial stress syndrome in distance runners
Publication date
01-12-2018
Published in
BMC Sports Science, Medicine and Rehabilitation / Issue 1/2018
Electronic ISSN: 2052-1847
DOI
https://doi.org/10.1186/s13102-018-0109-1

Other articles of this Issue 1/2018

BMC Sports Science, Medicine and Rehabilitation 1/2018 Go to the issue