Skip to main content
Top
Published in: Gut Pathogens 1/2020

01-12-2020 | Clostridium | Research

Host responses to Clostridium perfringens challenge in a chicken model of chronic stress

Authors: Sarah J. M. Zaytsoff, Sarah M. Lyons, Alexander M. Garner, Richard R. E. Uwiera, Wesley F. Zandberg, D. Wade Abbott, G. Douglas Inglis

Published in: Gut Pathogens | Issue 1/2020

Login to get access

Abstract

Background

This study utilized a chicken model of chronic physiological stress mediated by corticosterone (CORT) administration to ascertain how various host metrics are altered upon challenge with Clostridium perfringens. Necrotic enteritis (NE) is a disease of the small intestine of chickens incited by C. perfringens, which can result in elevated morbidity and mortality. The objective of the current study was to investigate how physiological stress alters host responses and predisposes birds to subclinical NE.

Results

Birds administered CORT exhibited higher densities of C. perfringens in their intestine, and this corresponded to altered production of intestinal mucus. Characterization of mucus showed that C. perfringens treatment altered the relative abundance of five glycans. Birds inoculated with C. perfringens did not exhibit evidence of acute morbidity. However, histopathologic changes were observed in the small intestine of infected birds. Birds administered CORT showed altered gene expression of tight junction proteins (i.e. CLDN3 and CLDN5) and toll-like receptors (i.e. TLR2 and TLR15) in the small intestine. Moreover, birds administered CORT exhibited increased expression of IL2 and G-CSF in the spleen, and IL1β, IL2, IL18, IFNγ, and IL6 in the thymus. Body weight gain was impaired only in birds that were administered CORT and challenged with C. perfringens.

Conclusion

CORT administration modulated a number of host functions, which corresponded to increased densities of C. perfringens in the small intestine and weight gain impairment in chickens. Importantly, results implicate physiological stress as an important predisposing factor to NE, which emphasizes the importance of managing stress to optimize chicken health.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wade B, Keyburn A. The true cost of necrotic enteritis. World Poult. 2015;31:16–7. Wade B, Keyburn A. The true cost of necrotic enteritis. World Poult. 2015;31:16–7.
2.
go back to reference Tsiouris V, Georgopoulou I, Batzios C, Pappaioannou N, Ducatelle R, Fortomaris P. High stocking density as a predisposing factor for necrotic enteritis in broiler chicks. Avian Pathol. 2015;44:59–66.PubMedCrossRef Tsiouris V, Georgopoulou I, Batzios C, Pappaioannou N, Ducatelle R, Fortomaris P. High stocking density as a predisposing factor for necrotic enteritis in broiler chicks. Avian Pathol. 2015;44:59–66.PubMedCrossRef
3.
go back to reference Tsiouris V, Georgopoulou I, Batzios C, Pappaioannou N, Ducatelle R, Fortomaris P. The effect of cold stress on the pathogenesis of necrotic enteritis in broiler chicks. Avian Pathol. 2015;44:430–5.PubMedCrossRef Tsiouris V, Georgopoulou I, Batzios C, Pappaioannou N, Ducatelle R, Fortomaris P. The effect of cold stress on the pathogenesis of necrotic enteritis in broiler chicks. Avian Pathol. 2015;44:430–5.PubMedCrossRef
4.
go back to reference Tsiouris V, Georgopoulou I, Batzios C, Pappaioannou N, Ducatelle R, Fortomaris P. Heat stress as a predisposing factor for necrotic enteritis in broiler chicks. Avian Pathol. 2018;47:616–24.PubMedCrossRef Tsiouris V, Georgopoulou I, Batzios C, Pappaioannou N, Ducatelle R, Fortomaris P. Heat stress as a predisposing factor for necrotic enteritis in broiler chicks. Avian Pathol. 2018;47:616–24.PubMedCrossRef
5.
go back to reference Moore RJ. Necrotic enteritis predisposing factors in broiler chickens. Avian Pathol. 2016;45:1–22.CrossRef Moore RJ. Necrotic enteritis predisposing factors in broiler chickens. Avian Pathol. 2016;45:1–22.CrossRef
6.
go back to reference Collier C, Hofacre C, Payne A, Anderson D, Kaiser P, Mackie RI, Gaskins HR. Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth. Vet Immunol Immunopathol. 2008;122:104–15.PubMedCrossRef Collier C, Hofacre C, Payne A, Anderson D, Kaiser P, Mackie RI, Gaskins HR. Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth. Vet Immunol Immunopathol. 2008;122:104–15.PubMedCrossRef
7.
go back to reference Stanley D, Wu S-B, Rodgers N, Swick RA, Moore RJ. Differential responses of cecal microbiota to fishmeal, Eimeria and Clostridium perfringens in a necrotic enteritis challenge model in chickens. PLoS ONE. 2014;9:e104739.PubMedPubMedCentralCrossRef Stanley D, Wu S-B, Rodgers N, Swick RA, Moore RJ. Differential responses of cecal microbiota to fishmeal, Eimeria and Clostridium perfringens in a necrotic enteritis challenge model in chickens. PLoS ONE. 2014;9:e104739.PubMedPubMedCentralCrossRef
8.
go back to reference Hermans P, Morgan K. Prevalence and associated risk factors of necrotic enteritis on broiler farms in the United Kingdom; a cross-sectional survey. Avian Pathol. 2007;36:43–51.PubMedCrossRef Hermans P, Morgan K. Prevalence and associated risk factors of necrotic enteritis on broiler farms in the United Kingdom; a cross-sectional survey. Avian Pathol. 2007;36:43–51.PubMedCrossRef
9.
go back to reference Freestone PP, Sandrini SM, Haigh RD, Lyte M. Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol. 2008;16:55–64.PubMedCrossRef Freestone PP, Sandrini SM, Haigh RD, Lyte M. Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol. 2008;16:55–64.PubMedCrossRef
10.
go back to reference O’Malley D, Julio-Pieper M, Gibney SM, Dinan TG, Cryan JF. Distinct alterations in colonic morphology and physiology in two rat models of enhanced stress-induced anxiety and depression-like behaviour. Stress. 2010;13:114–22.PubMedCrossRef O’Malley D, Julio-Pieper M, Gibney SM, Dinan TG, Cryan JF. Distinct alterations in colonic morphology and physiology in two rat models of enhanced stress-induced anxiety and depression-like behaviour. Stress. 2010;13:114–22.PubMedCrossRef
11.
go back to reference Smirnov A, Sklan D, Uni Z. Mucin dynamics in the chick small intestine are altered by starvation. J Nutr. 2004;134:736–42.PubMedCrossRef Smirnov A, Sklan D, Uni Z. Mucin dynamics in the chick small intestine are altered by starvation. J Nutr. 2004;134:736–42.PubMedCrossRef
12.
go back to reference Soderholm JD, Perdue MH. II Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol. 2001;280:7–13.CrossRef Soderholm JD, Perdue MH. II Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol. 2001;280:7–13.CrossRef
13.
go back to reference Smith F, Clark JE, Overman BL, Tozel CC, Huang JH, Rivier JE, Blisklager AT, Moeser AJ. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am J Physiol Gastrointest Liver Physiol. 2009;298:G352–63.PubMedPubMedCentralCrossRef Smith F, Clark JE, Overman BL, Tozel CC, Huang JH, Rivier JE, Blisklager AT, Moeser AJ. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am J Physiol Gastrointest Liver Physiol. 2009;298:G352–63.PubMedPubMedCentralCrossRef
14.
go back to reference Pearce S, Mani V, Boddicker R, Johnson J, Weber T, Ross J, Baumgard L, Gabler N. Heat stress reduces barrier function and alters intestinal metabolism in growing pigs. J Anim Sci. 2012;90:257–9.PubMedCrossRef Pearce S, Mani V, Boddicker R, Johnson J, Weber T, Ross J, Baumgard L, Gabler N. Heat stress reduces barrier function and alters intestinal metabolism in growing pigs. J Anim Sci. 2012;90:257–9.PubMedCrossRef
15.
go back to reference Varasteh S, Braber S, Akbari P, Garssen J, Fink-Gremmels J. Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PLoS ONE. 2015;10:e0138975.PubMedPubMedCentralCrossRef Varasteh S, Braber S, Akbari P, Garssen J, Fink-Gremmels J. Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PLoS ONE. 2015;10:e0138975.PubMedPubMedCentralCrossRef
16.
go back to reference Shini S, Huff GR, Shini A, Kaiser P. Understanding stress-induced immunosuppression: exploration of cytokine and chemokine gene profiles in chicken peripheral leukocytes. Poult Sci. 2010;89:841–51.PubMedCrossRef Shini S, Huff GR, Shini A, Kaiser P. Understanding stress-induced immunosuppression: exploration of cytokine and chemokine gene profiles in chicken peripheral leukocytes. Poult Sci. 2010;89:841–51.PubMedCrossRef
17.
go back to reference Gross W, Siegel PJ. Long-term exposure of chickens to three levels of social stress. Avian Dis. 1981;25:312–25.PubMedCrossRef Gross W, Siegel PJ. Long-term exposure of chickens to three levels of social stress. Avian Dis. 1981;25:312–25.PubMedCrossRef
18.
go back to reference Garriga C, Hunter RR, Amat C, Planas JM, Mitchell MA, Moreto M. Heat stress increases apical glucose transport in the chicken jejunum. Am J Physiol Regul Integr Comp Physiol. 2006;290:195–201.CrossRef Garriga C, Hunter RR, Amat C, Planas JM, Mitchell MA, Moreto M. Heat stress increases apical glucose transport in the chicken jejunum. Am J Physiol Regul Integr Comp Physiol. 2006;290:195–201.CrossRef
19.
go back to reference Edens FW. Influence of atmospheric ammonia on serum corticosterone, estradiol-17 and progesterone in laying hens. Int J Poultry Sci. 2015;14:427–35.CrossRef Edens FW. Influence of atmospheric ammonia on serum corticosterone, estradiol-17 and progesterone in laying hens. Int J Poultry Sci. 2015;14:427–35.CrossRef
20.
go back to reference Post J, Rebel JMJ, Huurne A. Physiological effects of elevated plasma corticosterone concentrations in broiler chickens. An alternative means by which to assess the physiological effects of stress. Poult Sci. 2003;82:1313–8.PubMedCrossRef Post J, Rebel JMJ, Huurne A. Physiological effects of elevated plasma corticosterone concentrations in broiler chickens. An alternative means by which to assess the physiological effects of stress. Poult Sci. 2003;82:1313–8.PubMedCrossRef
21.
go back to reference Shini S, Shini A, Huff GR. Effects of chronic and repeated corticosterone administration in rearing chickens on physiology, the onset of lay and egg production of hens. Physiol Behav. 2009;98:73–7.PubMedCrossRef Shini S, Shini A, Huff GR. Effects of chronic and repeated corticosterone administration in rearing chickens on physiology, the onset of lay and egg production of hens. Physiol Behav. 2009;98:73–7.PubMedCrossRef
22.
go back to reference Virden W, Thaxton J, Corzo A, Dozier W III. Evaluation of models using corticosterone and adrenocorticotropin to induce conditions mimicking physiological stress in commercial broilers. Poultry Sci. 2007;86:2485–91.CrossRef Virden W, Thaxton J, Corzo A, Dozier W III. Evaluation of models using corticosterone and adrenocorticotropin to induce conditions mimicking physiological stress in commercial broilers. Poultry Sci. 2007;86:2485–91.CrossRef
23.
go back to reference MacMillan JL, Vicaretti SD, Noyovitz B, Xing X, Low KE, Inglis GD, Zaytsoff SJ, Boraston AB, Smith SP, Uwiera RR. Structural analysis of broiler chicken small intestinal mucin O-glycan modification by Clostridium perfringens. Poult Sci. 2019;98(10):5074–88.PubMedCrossRef MacMillan JL, Vicaretti SD, Noyovitz B, Xing X, Low KE, Inglis GD, Zaytsoff SJ, Boraston AB, Smith SP, Uwiera RR. Structural analysis of broiler chicken small intestinal mucin O-glycan modification by Clostridium perfringens. Poult Sci. 2019;98(10):5074–88.PubMedCrossRef
24.
go back to reference Kaldhusdal M, Hofshagen M, Løvland A, Langstrand H, Redhead K. Necrotic enteritis challenge models with broiler chickens raised on litter: evaluation of preconditions, Clostridium perfringens strains and outcome variables. FEMS Immunol Med Microbiol. 1999;24:337–43.PubMedCrossRef Kaldhusdal M, Hofshagen M, Løvland A, Langstrand H, Redhead K. Necrotic enteritis challenge models with broiler chickens raised on litter: evaluation of preconditions, Clostridium perfringens strains and outcome variables. FEMS Immunol Med Microbiol. 1999;24:337–43.PubMedCrossRef
25.
go back to reference Calefi AS, Quinteiro-Filho WM, de Siqueira A, Lima APN, Cruz DSG, Hazarbassanov NQ, Salvagni FA, Borsoi A, Gomes CO, Maiorka PC. Heat stress, Eimeria spp. and C. perfringens infections alone or in combination modify gut Th1/Th2 cytokine balance and avian necrotic enteritis pathogenesis. Vet Immunol Immunopathol. 2019;210:28–37.CrossRef Calefi AS, Quinteiro-Filho WM, de Siqueira A, Lima APN, Cruz DSG, Hazarbassanov NQ, Salvagni FA, Borsoi A, Gomes CO, Maiorka PC. Heat stress, Eimeria spp. and C. perfringens infections alone or in combination modify gut Th1/Th2 cytokine balance and avian necrotic enteritis pathogenesis. Vet Immunol Immunopathol. 2019;210:28–37.CrossRef
26.
go back to reference Cheung JK, Keyburn AL, Carter GP, Lanckriet AL, Van Immerseel F, Moore RJ, Rood JI. The VirSR two-component signal transduction system regulates NetB toxin production in Clostridium perfringens. Infect Immun. 2010;78:3064–72.PubMedPubMedCentralCrossRef Cheung JK, Keyburn AL, Carter GP, Lanckriet AL, Van Immerseel F, Moore RJ, Rood JI. The VirSR two-component signal transduction system regulates NetB toxin production in Clostridium perfringens. Infect Immun. 2010;78:3064–72.PubMedPubMedCentralCrossRef
27.
go back to reference Deplancke B, Vidal O, Ganessunker D, Donovan SM, Mackie RI, Gaskins HR. Selective growth of mucolytic bacteria including Clostridium perfringens in a neonatal piglet model of total parenteral nutrition. Am J Clin Nutr. 2002;76:1117–25.PubMedCrossRef Deplancke B, Vidal O, Ganessunker D, Donovan SM, Mackie RI, Gaskins HR. Selective growth of mucolytic bacteria including Clostridium perfringens in a neonatal piglet model of total parenteral nutrition. Am J Clin Nutr. 2002;76:1117–25.PubMedCrossRef
28.
go back to reference Kitessa SM, Nattrass GS, Forder RE, McGrice HA, Wu S-B, Hughes RJ. Mucin gene mRNA levels in broilers challenged with Eimeria and/or Clostridium perfringens. Avian Dis. 2014;58:408–14.PubMedCrossRef Kitessa SM, Nattrass GS, Forder RE, McGrice HA, Wu S-B, Hughes RJ. Mucin gene mRNA levels in broilers challenged with Eimeria and/or Clostridium perfringens. Avian Dis. 2014;58:408–14.PubMedCrossRef
29.
go back to reference Du E, Wang W, Gan L, Li Z, Guo S, Guo Y. Effects of thymol and carvacrol supplementation on intestinal integrity and immune responses of broiler chickens challenged with Clostridium perfringens. J Anim Sci Biotechno. 2016;7:19.CrossRef Du E, Wang W, Gan L, Li Z, Guo S, Guo Y. Effects of thymol and carvacrol supplementation on intestinal integrity and immune responses of broiler chickens challenged with Clostridium perfringens. J Anim Sci Biotechno. 2016;7:19.CrossRef
30.
go back to reference Amerongen AN, Bolscher J, Bloemena E, Veerman EC. Sulfomucins in the human body. Biol Chem. 1998;379:1–18.CrossRef Amerongen AN, Bolscher J, Bloemena E, Veerman EC. Sulfomucins in the human body. Biol Chem. 1998;379:1–18.CrossRef
31.
go back to reference Brockhausen I. Sulphotransferases acting on mucin-type oligosaccharides. Biochem Soc Trans. 2003;31(2):318–25.PubMedCrossRef Brockhausen I. Sulphotransferases acting on mucin-type oligosaccharides. Biochem Soc Trans. 2003;31(2):318–25.PubMedCrossRef
32.
go back to reference Huang Y-L, Chassard C, Hausmann M, Von Itzstein M, Hennet T. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat Commun. 2015;6:8141.PubMedCrossRef Huang Y-L, Chassard C, Hausmann M, Von Itzstein M, Hennet T. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat Commun. 2015;6:8141.PubMedCrossRef
33.
go back to reference Struwe WB, Gough R, Gallagher ME, Kenny DT, Carrington SD, Karlsson NG, Rudd PM. Identification of O-glycan structures from chicken intestinal mucins provides insight into Campylobactor jejuni pathogenicity. Mol Cellul Proteomics. 2015;14:1464–77.CrossRef Struwe WB, Gough R, Gallagher ME, Kenny DT, Carrington SD, Karlsson NG, Rudd PM. Identification of O-glycan structures from chicken intestinal mucins provides insight into Campylobactor jejuni pathogenicity. Mol Cellul Proteomics. 2015;14:1464–77.CrossRef
34.
go back to reference Veshnyakova A, Protze J, Rossa J, Blasig IE, Krause G, Piontek J. On the interaction of Clostridium perfringens enterotoxin with claudins. Toxins. 2010;2:1336–56.PubMedPubMedCentralCrossRef Veshnyakova A, Protze J, Rossa J, Blasig IE, Krause G, Piontek J. On the interaction of Clostridium perfringens enterotoxin with claudins. Toxins. 2010;2:1336–56.PubMedPubMedCentralCrossRef
35.
go back to reference Fischer A, Gluth M, Weege F, Pape U-F, Wiedenmann B, Baumgart DC, Theuring F. Glucocorticoids regulate barrier function and claudin expression in intestinal epithelial cells via MKP-1. Am J Physiol Gastrointest Liver Physiol. 2013;306:G218–28.PubMedCrossRef Fischer A, Gluth M, Weege F, Pape U-F, Wiedenmann B, Baumgart DC, Theuring F. Glucocorticoids regulate barrier function and claudin expression in intestinal epithelial cells via MKP-1. Am J Physiol Gastrointest Liver Physiol. 2013;306:G218–28.PubMedCrossRef
36.
go back to reference Mitchell LA, Overgaard CE, Ward C, Margulies SS, Koval M. Differential effects of claudin-3 and claudin-4 on alveolar epithelial barrier function. Am J Physiol Lung Cell Mol Physiol. 2011;301:L40–9.PubMedPubMedCentralCrossRef Mitchell LA, Overgaard CE, Ward C, Margulies SS, Koval M. Differential effects of claudin-3 and claudin-4 on alveolar epithelial barrier function. Am J Physiol Lung Cell Mol Physiol. 2011;301:L40–9.PubMedPubMedCentralCrossRef
37.
go back to reference Mukiza CN, Dubreuil JDJI. Immunity: Escherichia coli heat-stable toxin b impairs intestinal epithelial barrier function by altering tight junction proteins. Infect Immun. 2013;81:2819–27.CrossRef Mukiza CN, Dubreuil JDJI. Immunity: Escherichia coli heat-stable toxin b impairs intestinal epithelial barrier function by altering tight junction proteins. Infect Immun. 2013;81:2819–27.CrossRef
38.
go back to reference Nusrat A, von Eichel-Streiber C, Turner J, Verkade P, Madara J, Parkos CJ. Immunity: Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect Immunity. 2001;69:1329–36.CrossRef Nusrat A, von Eichel-Streiber C, Turner J, Verkade P, Madara J, Parkos CJ. Immunity: Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect Immunity. 2001;69:1329–36.CrossRef
39.
go back to reference Osselaere A, Santos R, Hautekiet V, De Backer P, Chiers K, Ducatelle R, Croubels S. Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small intestine. PLoS ONE. 2013;8:e69014.PubMedPubMedCentralCrossRef Osselaere A, Santos R, Hautekiet V, De Backer P, Chiers K, Ducatelle R, Croubels S. Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small intestine. PLoS ONE. 2013;8:e69014.PubMedPubMedCentralCrossRef
40.
go back to reference Tsukita S, Furuse M. Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol. 1999;9:268–73.CrossRefPubMed Tsukita S, Furuse M. Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol. 1999;9:268–73.CrossRefPubMed
41.
go back to reference Cario E. Barrier-protective function of intestinal epithelial Toll-like receptor 2. Mucosal Immunol. 2008;1:S62–6.PubMedCrossRef Cario E. Barrier-protective function of intestinal epithelial Toll-like receptor 2. Mucosal Immunol. 2008;1:S62–6.PubMedCrossRef
42.
go back to reference Cario E, Gerken G, Podolsky D. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology. 2007;132:1359–74.PubMedCrossRef Cario E, Gerken G, Podolsky D. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology. 2007;132:1359–74.PubMedCrossRef
43.
go back to reference Nerren JR, He H, Genovese K, Kogut MH. Expression of the avian-specific toll-like receptor 15 in chicken heterophils is mediated by gram-negative and gram-positive bacteria, but not TLR agonists. Vet Immunol Immunopathol. 2010;136:151–6.PubMedCrossRef Nerren JR, He H, Genovese K, Kogut MH. Expression of the avian-specific toll-like receptor 15 in chicken heterophils is mediated by gram-negative and gram-positive bacteria, but not TLR agonists. Vet Immunol Immunopathol. 2010;136:151–6.PubMedCrossRef
44.
go back to reference Higgs R, Cormican P, Cahalane S, Allan B, Lloyd AT, Meade K, James T, Lynn DJ, Babiuk LA, O’Farrelly C. Induction of a novel chicken Toll-like receptor following Salmonella enterica serovar Typhimurium infection. Infect Immun. 2006;74:1692–8.PubMedPubMedCentralCrossRef Higgs R, Cormican P, Cahalane S, Allan B, Lloyd AT, Meade K, James T, Lynn DJ, Babiuk LA, O’Farrelly C. Induction of a novel chicken Toll-like receptor following Salmonella enterica serovar Typhimurium infection. Infect Immun. 2006;74:1692–8.PubMedPubMedCentralCrossRef
45.
go back to reference Lancaster GI, Khan Q, Drysdale P, Wallace F, Jeukendrup AE, Drayson MT, Gleeson M. The physiological regulation of toll-like receptor expression and function in humans. J Physiol. 2005;563:945–55.PubMedPubMedCentralCrossRef Lancaster GI, Khan Q, Drysdale P, Wallace F, Jeukendrup AE, Drayson MT, Gleeson M. The physiological regulation of toll-like receptor expression and function in humans. J Physiol. 2005;563:945–55.PubMedPubMedCentralCrossRef
46.
go back to reference Quinteiro-Filho W, Calefi A, Cruz D, Aloia T, Zager A, Astolfi-Ferreira C, Ferreira JP, Sharif S, Palermo-Neto J. Heat stress decreases expression of the cytokines, avian β-defensins 4 and 6 and Toll-like receptor 2 in broiler chickens infected with Salmonella Enteritidis. Vet Immunol Immunopathol. 2017;186:19–28.PubMedCrossRef Quinteiro-Filho W, Calefi A, Cruz D, Aloia T, Zager A, Astolfi-Ferreira C, Ferreira JP, Sharif S, Palermo-Neto J. Heat stress decreases expression of the cytokines, avian β-defensins 4 and 6 and Toll-like receptor 2 in broiler chickens infected with Salmonella Enteritidis. Vet Immunol Immunopathol. 2017;186:19–28.PubMedCrossRef
47.
go back to reference Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology. 2004;127:224–38.PubMedCrossRef Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology. 2004;127:224–38.PubMedCrossRef
48.
go back to reference Huang T, Gao B, Chen W-L, Xiang R, Yuan M-G, Xu Z, Peng X-Y. Temporal effects of high fishmeal diet on gut microbiota and immune response in Clostridium perfringens-challenged chickens. Front Microbiol. 2018;9:2754.PubMedPubMedCentralCrossRef Huang T, Gao B, Chen W-L, Xiang R, Yuan M-G, Xu Z, Peng X-Y. Temporal effects of high fishmeal diet on gut microbiota and immune response in Clostridium perfringens-challenged chickens. Front Microbiol. 2018;9:2754.PubMedPubMedCentralCrossRef
49.
go back to reference Lee KW, Lillehoj HS, Jeong W, Jeoung HY, An DJ. Avian necrotic enteritis: experimental models, host immunity, pathogenesis, risk factors, and vaccine development. Poult Sci. 2011;90:1381–90.PubMedCrossRef Lee KW, Lillehoj HS, Jeong W, Jeoung HY, An DJ. Avian necrotic enteritis: experimental models, host immunity, pathogenesis, risk factors, and vaccine development. Poult Sci. 2011;90:1381–90.PubMedCrossRef
50.
go back to reference Calefi AS, Honda BTB, Costola-de-Souza C, de Siqueira A, Namazu LB, Quinteiro-Filho WM, et al. Effects of long-term heat stress in an experimental model of avian necrotic enteritis. Poult Sci. 2014;93:1344–53.PubMedCrossRef Calefi AS, Honda BTB, Costola-de-Souza C, de Siqueira A, Namazu LB, Quinteiro-Filho WM, et al. Effects of long-term heat stress in an experimental model of avian necrotic enteritis. Poult Sci. 2014;93:1344–53.PubMedCrossRef
51.
go back to reference Fasina YO, Lillehoj HS. Characterization of intestinal immune response to Clostridium perfringens infection in broiler chickens. Poult Sci. 2018;98:188–98.PubMedCentralCrossRef Fasina YO, Lillehoj HS. Characterization of intestinal immune response to Clostridium perfringens infection in broiler chickens. Poult Sci. 2018;98:188–98.PubMedCentralCrossRef
52.
go back to reference Park SS, Lillehoj HS, Allen PC, Park DW, FitzCoy S, Bautista DA, Lillehoj EP. Immunopathology and cytokine responses in broiler chickens coinfected with Eimeria maxima and Clostridium perfringens with the use of an animal model of necrotic enteritis. Avian Dis. 2008;52:14–22.PubMedCrossRef Park SS, Lillehoj HS, Allen PC, Park DW, FitzCoy S, Bautista DA, Lillehoj EP. Immunopathology and cytokine responses in broiler chickens coinfected with Eimeria maxima and Clostridium perfringens with the use of an animal model of necrotic enteritis. Avian Dis. 2008;52:14–22.PubMedCrossRef
54.
go back to reference Schat KA, Kaspers B, Kaiser P. Avian immunology. New York: Academic Press; 2012. Schat KA, Kaspers B, Kaiser P. Avian immunology. New York: Academic Press; 2012.
55.
go back to reference Hilton LS, Bean AG, Kimpton WG, Lowenthal JW. Interleukin-2 directly induces activation and proliferation of chicken T cells in vivo. J Interferon Cytokine. 2002;22:755–63.CrossRef Hilton LS, Bean AG, Kimpton WG, Lowenthal JW. Interleukin-2 directly induces activation and proliferation of chicken T cells in vivo. J Interferon Cytokine. 2002;22:755–63.CrossRef
56.
go back to reference Gibson MS, Kaiser P, Fife M. Identification of chicken granulocyte colony-stimulating factor (G-CSF/CSF3): the previously described myelomonocytic growth factor is actually CSF3. J Interferon Cytokine. 2009;29:339–44.CrossRef Gibson MS, Kaiser P, Fife M. Identification of chicken granulocyte colony-stimulating factor (G-CSF/CSF3): the previously described myelomonocytic growth factor is actually CSF3. J Interferon Cytokine. 2009;29:339–44.CrossRef
57.
go back to reference Hong YH, Song W, Lee S, Lillehoj H. Differential gene expression profiles of β-defensins in the crop, intestine, and spleen using a necrotic enteritis model in 2 commercial broiler chicken lines. Poult Sci. 2012;91:1081–8.PubMedCrossRef Hong YH, Song W, Lee S, Lillehoj H. Differential gene expression profiles of β-defensins in the crop, intestine, and spleen using a necrotic enteritis model in 2 commercial broiler chicken lines. Poult Sci. 2012;91:1081–8.PubMedCrossRef
58.
go back to reference Compton MM, Gibbs PS, Johnson LR. Glucocorticoid activation of deoxyribonucleic acid degradation in bursal lymphocytes. Poult Sci. 1990;69:1292–8.PubMedCrossRef Compton MM, Gibbs PS, Johnson LR. Glucocorticoid activation of deoxyribonucleic acid degradation in bursal lymphocytes. Poult Sci. 1990;69:1292–8.PubMedCrossRef
59.
go back to reference Zaytsoff SJ, Brown CL, Montina T, Metz GAM, Abbott DW, Uwiera RR, Inglis GD. Corticosterone-mediated physiological stress modulates hepatic lipid metabolism, metabolite profiles, and systemic responses in chickens. Sci Rep. 2019;9:19225.PubMedPubMedCentralCrossRef Zaytsoff SJ, Brown CL, Montina T, Metz GAM, Abbott DW, Uwiera RR, Inglis GD. Corticosterone-mediated physiological stress modulates hepatic lipid metabolism, metabolite profiles, and systemic responses in chickens. Sci Rep. 2019;9:19225.PubMedPubMedCentralCrossRef
60.
go back to reference Colditz I. Effects of the immune system on metabolism: implications for production and disease resistance in livestock. Livest Prod Sci. 2002;75:257–68.CrossRef Colditz I. Effects of the immune system on metabolism: implications for production and disease resistance in livestock. Livest Prod Sci. 2002;75:257–68.CrossRef
61.
go back to reference Jensen EC. Quantitative analysis of histological staining and fluorescence using ImageJ. Anatom Record. 2013;296:378–81.CrossRef Jensen EC. Quantitative analysis of histological staining and fluorescence using ImageJ. Anatom Record. 2013;296:378–81.CrossRef
62.
go back to reference Huang Y, Mechref Y, Novotny MV. Microscale nonreductive release of O-linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis. Anal Chem. 2001;73:6063–9.PubMedCrossRef Huang Y, Mechref Y, Novotny MV. Microscale nonreductive release of O-linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis. Anal Chem. 2001;73:6063–9.PubMedCrossRef
63.
go back to reference Vicaretti SD, Mohtarudin NA, Garner AM, Zandberg WF. Capillary electrophoresis analysis of bovine milk oligosaccharides permits an assessment of the influence of diet and the discovery of nine abundant sulfated analogues. J Agr Food Chem. 2018;66:8574–83.CrossRef Vicaretti SD, Mohtarudin NA, Garner AM, Zandberg WF. Capillary electrophoresis analysis of bovine milk oligosaccharides permits an assessment of the influence of diet and the discovery of nine abundant sulfated analogues. J Agr Food Chem. 2018;66:8574–83.CrossRef
64.
go back to reference Danyluk HJ, Shum LK, Zandberg WF: A rapid procedure for the purification of 8-aminopyrene trisulfonate (APTS)-labeled glycans for capillary electrophoresis (CE)-based enzyme assays. In Protein-Carbohydrate Interactions. Springer; 2017. p. 223–36. Danyluk HJ, Shum LK, Zandberg WF: A rapid procedure for the purification of 8-aminopyrene trisulfonate (APTS)-labeled glycans for capillary electrophoresis (CE)-based enzyme assays. In Protein-Carbohydrate Interactions. Springer; 2017. p. 223–36.
65.
go back to reference Wylie AD, Zandberg WF. Quantitation of sialic acids in infant formulas by liquid chromatography–mass spectrometry: an assessment of different protein sources and discovery of new analogues. J Agr Food Chem. 2018;66:8114–23.CrossRef Wylie AD, Zandberg WF. Quantitation of sialic acids in infant formulas by liquid chromatography–mass spectrometry: an assessment of different protein sources and discovery of new analogues. J Agr Food Chem. 2018;66:8114–23.CrossRef
66.
go back to reference Dubois M, Gilles KA, Hamilton JK. Rebers Pt, Smith F: Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–6.CrossRef Dubois M, Gilles KA, Hamilton JK. Rebers Pt, Smith F: Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–6.CrossRef
67.
go back to reference Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8:R19.PubMedPubMedCentralCrossRef Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8:R19.PubMedPubMedCentralCrossRef
68.
go back to reference Gholamiandehkordi AR, Timbermont L, Lanckriet A, Broeck WVD, Pedersen K, Dewulf J, Pasmans F, Haesebrouck F, Ducatelle R, Immerseel FV. Quantification of gut lesions in a subclinical necrotic enteritis model. Avian Pathol. 2007;36:375–82.PubMedCrossRef Gholamiandehkordi AR, Timbermont L, Lanckriet A, Broeck WVD, Pedersen K, Dewulf J, Pasmans F, Haesebrouck F, Ducatelle R, Immerseel FV. Quantification of gut lesions in a subclinical necrotic enteritis model. Avian Pathol. 2007;36:375–82.PubMedCrossRef
69.
go back to reference Quinteiro-Filho W, Gomes A, Pinheiro M, Ribeiro A, Ferraz-de-Paula V, Astolfi-Ferreira C, Ferreira A, Palermo-Neto J. Heat stress impairs performance and induces intestinal inflammation in broiler chickens infected with Salmonella Enteritidis. Avian Pathol. 2012;41:421–7.PubMedCrossRef Quinteiro-Filho W, Gomes A, Pinheiro M, Ribeiro A, Ferraz-de-Paula V, Astolfi-Ferreira C, Ferreira A, Palermo-Neto J. Heat stress impairs performance and induces intestinal inflammation in broiler chickens infected with Salmonella Enteritidis. Avian Pathol. 2012;41:421–7.PubMedCrossRef
Metadata
Title
Host responses to Clostridium perfringens challenge in a chicken model of chronic stress
Authors
Sarah J. M. Zaytsoff
Sarah M. Lyons
Alexander M. Garner
Richard R. E. Uwiera
Wesley F. Zandberg
D. Wade Abbott
G. Douglas Inglis
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Clostridium
Published in
Gut Pathogens / Issue 1/2020
Electronic ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-020-00362-9

Other articles of this Issue 1/2020

Gut Pathogens 1/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.