Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2017

Open Access 01-12-2017 | Review

Tissue-specific methylation profile in obese patients with type 2 diabetes before and after Roux-en-Y gastric bypass

Authors: Priscila Sala, Raquel Susana Matos de Miranda Torrinhas, Danielle Cristina Fonseca, Graziela Rosa Ravacci, Dan Linetzky Waitzberg, Daniel Giannella-Neto

Published in: Diabetology & Metabolic Syndrome | Issue 1/2017

Login to get access

Abstract

Eating habits, lifestyles, and exposure to specific environmental factors can greatly impact the risk of developing type 2 diabetes (T2D), influence the genome epigenetically, and affect the expression of genes, including genes related to glycemic control, at any stage of life. The epigenetic mechanism underlying obesity and T2D pathogenesis remains poorly understood. Conventional strategies for the treatment of obesity and its comorbidities often have poor long-term adherence, and pharmacological interventions are limited. Bariatric surgery is the most effective current option to treat severe obesity, and Roux-en-Y gastric bypass (RYGB) is the most applied technique worldwide. Epigenetic changes differ depending on the approach used to treat obesity and its associated comorbidities (clinical or surgical). Compared to primary clinical care, bariatric surgery leads to much greater loss of body weight and higher remission rates of T2D and metabolic syndrome, with methylation profiles in promoter regions of genes in obese individuals becoming similar to those of normal-weight individuals. Bariatric surgery can influence DNA methylation in parallel with changes in gene expression pattern. Changes in clinical biomarkers that reflect improvements in glucose and lipid metabolism after RYGB often occur before major weight loss and are coordinated by surgery-induced changes in intestinal hormones. Therefore, the intestine methylation profile would assist in understanding the mechanisms involved in improved glycemic control after bariatric surgery. The main objectives in this area for the future are to identify epigenetic marks that could be used as early indicators of metabolic risk, and to develop treatments able to delay or even reverse these epigenetic changes. Studies that provide the “human epigenetic profile” will be of considerable value to identify tissue-specific epigenetic signatures and their role in the development of chronic diseases. Further studies should apply methods based on global analysis of the genome to identify methylated sites associated with disease and epigenetic marks associated with the remodeling response to bariatric surgery. This review describes the main epigenetic alterations associated with obesity and T2D and the potential role of RYGB in remodeling these changes.
Literature
2.
go back to reference van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS, Members of EpiSCOPE. Epigenetics and human obesity. Int J Obes. 2015;39:85–97.CrossRef van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS, Members of EpiSCOPE. Epigenetics and human obesity. Int J Obes. 2015;39:85–97.CrossRef
3.
go back to reference Li J, Harris RA, Cheung SW, Coarfa C, Jeong M, Goodell MA, et al. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome. PLoS Genet. 2012;8(5):e1002692.CrossRefPubMedPubMedCentral Li J, Harris RA, Cheung SW, Coarfa C, Jeong M, Goodell MA, et al. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome. PLoS Genet. 2012;8(5):e1002692.CrossRefPubMedPubMedCentral
5.
go back to reference Lewin B. Genes IX. 9th ed ed. Porto Alegre: Artmed; 2009. Lewin B. Genes IX. 9th ed ed. Porto Alegre: Artmed; 2009.
6.
go back to reference Raciti GA, Longo M, Parrillo L. Understanding type 2 diabetes: from genetics to epigenetics. Acta Diabetol. 2015;52:821–7.CrossRefPubMed Raciti GA, Longo M, Parrillo L. Understanding type 2 diabetes: from genetics to epigenetics. Acta Diabetol. 2015;52:821–7.CrossRefPubMed
10.
go back to reference He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333:1303–7.CrossRefPubMedPubMedCentral He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333:1303–7.CrossRefPubMedPubMedCentral
11.
go back to reference Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3.CrossRefPubMedPubMedCentral Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3.CrossRefPubMedPubMedCentral
12.
go back to reference Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–22.CrossRefPubMedPubMedCentral Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–22.CrossRefPubMedPubMedCentral
13.
go back to reference Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9:465–6.CrossRefPubMed Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9:465–6.CrossRefPubMed
14.
go back to reference Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975;14:9–25.CrossRefPubMed Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975;14:9–25.CrossRefPubMed
15.
go back to reference Nguyen CT, Gonzales FA, Jones PA. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res. 2001;29:4598–606.CrossRefPubMedPubMedCentral Nguyen CT, Gonzales FA, Jones PA. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res. 2001;29:4598–606.CrossRefPubMedPubMedCentral
16.
go back to reference Yan J, Zierath JR, Barrès R. Evidence for non-CpG methylation in mammals. Exp Cell Res. 2011;317:2555–61.CrossRefPubMed Yan J, Zierath JR, Barrès R. Evidence for non-CpG methylation in mammals. Exp Cell Res. 2011;317:2555–61.CrossRefPubMed
17.
go back to reference Dayeh TA, Olsson AH, Volkov P, Almgren P, Rönn T, Ling C. Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia. 2013;56:1036–46.CrossRefPubMedPubMedCentral Dayeh TA, Olsson AH, Volkov P, Almgren P, Rönn T, Ling C. Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia. 2013;56:1036–46.CrossRefPubMedPubMedCentral
18.
go back to reference Rideout WM III, Coetzee GA, Olumi AF, Jones PA. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science. 1990;249:1288–90.CrossRefPubMed Rideout WM III, Coetzee GA, Olumi AF, Jones PA. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science. 1990;249:1288–90.CrossRefPubMed
19.
go back to reference Kao SH, Wu KJ, Lee WH. Hypoxia, epithelial-mesenchymal transition, and TET-mediated epigenetic changes. J Clin Med. 2016;5(2):24.CrossRefPubMedCentral Kao SH, Wu KJ, Lee WH. Hypoxia, epithelial-mesenchymal transition, and TET-mediated epigenetic changes. J Clin Med. 2016;5(2):24.CrossRefPubMedCentral
22.
go back to reference Raciti GA, Nigro C, Longo M, Parrillo L, Miele C, Formisano P, et al. Personalized medicine and type 2 diabetes: lesson from epigenetics. Epigenomics. 2014;6:229–38.CrossRefPubMed Raciti GA, Nigro C, Longo M, Parrillo L, Miele C, Formisano P, et al. Personalized medicine and type 2 diabetes: lesson from epigenetics. Epigenomics. 2014;6:229–38.CrossRefPubMed
23.
go back to reference Feinberg AP, Irizarry R, Fradin D, Aryee MJ, Murakami P, Aspelund T, et al. Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med. 2010;2:49–67.CrossRef Feinberg AP, Irizarry R, Fradin D, Aryee MJ, Murakami P, Aspelund T, et al. Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med. 2010;2:49–67.CrossRef
24.
go back to reference Drong AW, Nicholson G, Hedman AK, Meduri E, Grundberg E, Small KS, et al. The presence of methylation quantitative trait loci indicates a direct genetic influence on the level of DNA methylation in adipose tissue. PLoS ONE. 2013;8:e55923.CrossRefPubMedPubMedCentral Drong AW, Nicholson G, Hedman AK, Meduri E, Grundberg E, Small KS, et al. The presence of methylation quantitative trait loci indicates a direct genetic influence on the level of DNA methylation in adipose tissue. PLoS ONE. 2013;8:e55923.CrossRefPubMedPubMedCentral
25.
go back to reference Hermsdorff HH, Mansego ML, Campión J, Milagro FI, Zulet MA, Martínez JA. TNFalpha promoter methylation in peripheral white blood cells: relationship with circulating TNFα, truncal fat and n-6 PUFA intake in young women. Cytokine. 2013;64:265–71.CrossRefPubMed Hermsdorff HH, Mansego ML, Campión J, Milagro FI, Zulet MA, Martínez JA. TNFalpha promoter methylation in peripheral white blood cells: relationship with circulating TNFα, truncal fat and n-6 PUFA intake in young women. Cytokine. 2013;64:265–71.CrossRefPubMed
26.
go back to reference Obermann-Borst SA, Eilers PHC, Tobi EW, de Jong FH, Slagboom PE, Heijmans BT, et al. Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatr Res. 2013;74:344–9.CrossRefPubMed Obermann-Borst SA, Eilers PHC, Tobi EW, de Jong FH, Slagboom PE, Heijmans BT, et al. Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatr Res. 2013;74:344–9.CrossRefPubMed
27.
go back to reference Kuehnen P, Mischke M, Wiegand S, Sers C, Horsthemke B, Lau S, et al. An Alu element-associated hypermethylation variant of the POMC gene is associated with childhood obesity. PLoS Genet. 2012;8:e1002543.CrossRefPubMedPubMedCentral Kuehnen P, Mischke M, Wiegand S, Sers C, Horsthemke B, Lau S, et al. An Alu element-associated hypermethylation variant of the POMC gene is associated with childhood obesity. PLoS Genet. 2012;8:e1002543.CrossRefPubMedPubMedCentral
28.
go back to reference Milagro FI, Gómez-Abellán P, Campión J, Martínez JA, Ordovás JM, Garaulet M. CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int. 2012;29:1180–94.CrossRefPubMed Milagro FI, Gómez-Abellán P, Campión J, Martínez JA, Ordovás JM, Garaulet M. CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int. 2012;29:1180–94.CrossRefPubMed
29.
go back to reference Barres R, Kirchner H, Rasmussen M, Yan J, Kantor FR, Krook A, et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 2013;3:1020–7.CrossRefPubMed Barres R, Kirchner H, Rasmussen M, Yan J, Kantor FR, Krook A, et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 2013;3:1020–7.CrossRefPubMed
30.
go back to reference Zhao J, Goldberg J, Vaccarino V. Promoter methylation of serotonin transporter gene is associated with obesity measures: a monozygotic twin study. Int J Obes. 2013;37:140–5.CrossRef Zhao J, Goldberg J, Vaccarino V. Promoter methylation of serotonin transporter gene is associated with obesity measures: a monozygotic twin study. Int J Obes. 2013;37:140–5.CrossRef
31.
go back to reference Movérare-Skrtic S, Mellström D, Vandenput L, Ehrich M, Ohlsson C. Peripheral blood leukocyte distribution and body mass index are associated with the methylation pattern of the androgen receptor promoter. Endocrine. 2009;35:204–10.CrossRefPubMed Movérare-Skrtic S, Mellström D, Vandenput L, Ehrich M, Ohlsson C. Peripheral blood leukocyte distribution and body mass index are associated with the methylation pattern of the androgen receptor promoter. Endocrine. 2009;35:204–10.CrossRefPubMed
32.
go back to reference Drake AJ, McPherson RC, Godfrey KM, Cooper C, Lillycrop K, Hanson M, et al. An unbalanced maternal diet in pregnancy associates with offspring epigenetic changes in genes controlling glucocorticoid action and foetal growth. Clin Endocrinol. 2012;77:808–15.CrossRef Drake AJ, McPherson RC, Godfrey KM, Cooper C, Lillycrop K, Hanson M, et al. An unbalanced maternal diet in pregnancy associates with offspring epigenetic changes in genes controlling glucocorticoid action and foetal growth. Clin Endocrinol. 2012;77:808–15.CrossRef
33.
go back to reference Stepanow S, Reichwald K, Huse K, Gausmann U, Nebel A, Rosenstiel P, et al. Allele-specific, age-dependent and BMI-associated DNA methylation of human MCHR1. PLoS ONE. 2011;6(5):e17711.CrossRefPubMedPubMedCentral Stepanow S, Reichwald K, Huse K, Gausmann U, Nebel A, Rosenstiel P, et al. Allele-specific, age-dependent and BMI-associated DNA methylation of human MCHR1. PLoS ONE. 2011;6(5):e17711.CrossRefPubMedPubMedCentral
35.
go back to reference Xu X, Su S, Barnes V, De Miguel C, Pollock J, Ownby D, et al. A genome-wide methylation study on obesity: differential variability and differential methylation. Epigenetics. 2013;8:522–33.CrossRefPubMedPubMedCentral Xu X, Su S, Barnes V, De Miguel C, Pollock J, Ownby D, et al. A genome-wide methylation study on obesity: differential variability and differential methylation. Epigenetics. 2013;8:522–33.CrossRefPubMedPubMedCentral
36.
go back to reference Almén MS, Jacobsson J, Moschonis G, Benedict C, Chrousos GP, Fredriksson R, et al. Genome wide analysis reveals association of a FTO gene variant with epigenetic changes. Genomics. 2012;99:132–7.CrossRefPubMed Almén MS, Jacobsson J, Moschonis G, Benedict C, Chrousos GP, Fredriksson R, et al. Genome wide analysis reveals association of a FTO gene variant with epigenetic changes. Genomics. 2012;99:132–7.CrossRefPubMed
37.
go back to reference van Dijk SJ, Tellam RL, Morrison JL, Muhlhausler BS, Molloy PL. Recent developments on the role of epigenetics in obesity and metabolic disease. Clin Epigenet. 2015;7:66.CrossRef van Dijk SJ, Tellam RL, Morrison JL, Muhlhausler BS, Molloy PL. Recent developments on the role of epigenetics in obesity and metabolic disease. Clin Epigenet. 2015;7:66.CrossRef
38.
go back to reference Hemminki K, Li X, Sundquist K, Sundquist J. Familial risks for type 2 diabetes in Sweden. Diabetes Care. 2010;33:293–7.CrossRefPubMed Hemminki K, Li X, Sundquist K, Sundquist J. Familial risks for type 2 diabetes in Sweden. Diabetes Care. 2010;33:293–7.CrossRefPubMed
39.
go back to reference Meigs JB, Cupples LA, Wilson PW. Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes. 2000;49:2201–7.CrossRefPubMed Meigs JB, Cupples LA, Wilson PW. Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes. 2000;49:2201–7.CrossRefPubMed
40.
go back to reference Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5.CrossRefPubMed Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5.CrossRefPubMed
41.
go back to reference Hidalgo B, Irvin MR, Sha J, Zhi D, Aslibekyan S, Absher D, et al. Epigenome-wide association study of fasting measures of glucose, insulin, and HOMA-IR in the Genetics of Lipid Lowering Drugs and Diet Network Study. Diabetes. 2014;63:801–7.CrossRefPubMedPubMedCentral Hidalgo B, Irvin MR, Sha J, Zhi D, Aslibekyan S, Absher D, et al. Epigenome-wide association study of fasting measures of glucose, insulin, and HOMA-IR in the Genetics of Lipid Lowering Drugs and Diet Network Study. Diabetes. 2014;63:801–7.CrossRefPubMedPubMedCentral
42.
go back to reference Chambers JC, Loh M, Lehne B, Drong A, Kriebel J, Motta V, et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol. 2015;3:526–34.CrossRefPubMedPubMedCentral Chambers JC, Loh M, Lehne B, Drong A, Kriebel J, Motta V, et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol. 2015;3:526–34.CrossRefPubMedPubMedCentral
43.
go back to reference Dayeh T, Volkov P, Salö S, Hall E, Nilsson E, Olsson AH, et al. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet. 2014;10(3):e1004160.CrossRefPubMedPubMedCentral Dayeh T, Volkov P, Salö S, Hall E, Nilsson E, Olsson AH, et al. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet. 2014;10(3):e1004160.CrossRefPubMedPubMedCentral
44.
45.
go back to reference Toperoff G, Aran D, Kark JD. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet. 2012;21:371–83.CrossRefPubMed Toperoff G, Aran D, Kark JD. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet. 2012;21:371–83.CrossRefPubMed
46.
go back to reference Nilsson E, Matte A, Perfilyev A, de Mello VD, Käkelä P, Pihlajamäki J, et al. Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. J Clin Endocrinol Metab. 2015;100:E1491–501.CrossRefPubMedPubMedCentral Nilsson E, Matte A, Perfilyev A, de Mello VD, Käkelä P, Pihlajamäki J, et al. Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. J Clin Endocrinol Metab. 2015;100:E1491–501.CrossRefPubMedPubMedCentral
47.
go back to reference Kirchner H, Sinha I, Gao H, Kirchner H, Sinha I, Gao H, et al. Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients. Mol Metab. 2016;5:171–83.CrossRefPubMedPubMedCentral Kirchner H, Sinha I, Gao H, Kirchner H, Sinha I, Gao H, et al. Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients. Mol Metab. 2016;5:171–83.CrossRefPubMedPubMedCentral
48.
go back to reference Nicoletti CF, Nonino CB, de Oliveira BA, Pinhel MA, Mansego ML, Milagro MI, et al. DNA methylation and hydroxymethylation levels in relation to two weight loss strategies: energy-restricted diet or bariatric surgery. Obes Surg. 2016;26:603–11.CrossRefPubMed Nicoletti CF, Nonino CB, de Oliveira BA, Pinhel MA, Mansego ML, Milagro MI, et al. DNA methylation and hydroxymethylation levels in relation to two weight loss strategies: energy-restricted diet or bariatric surgery. Obes Surg. 2016;26:603–11.CrossRefPubMed
49.
go back to reference Kirchner H, Nylen C, Laber S, Barrès R, Yan J, Krook A, et al. Altered promoter methylation of PDK4, IL1 B, IL6, and TNF after Roux-en Y gastric bypass. Surg Obes Relat Dis. 2014;10:671–8.CrossRefPubMed Kirchner H, Nylen C, Laber S, Barrès R, Yan J, Krook A, et al. Altered promoter methylation of PDK4, IL1 B, IL6, and TNF after Roux-en Y gastric bypass. Surg Obes Relat Dis. 2014;10:671–8.CrossRefPubMed
50.
go back to reference Gloy VL, Briel M, Bhatt DL, Kashyap SR, Schauer PR, Mingrone G, et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ. 2013;347:f5934.CrossRefPubMedPubMedCentral Gloy VL, Briel M, Bhatt DL, Kashyap SR, Schauer PR, Mingrone G, et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ. 2013;347:f5934.CrossRefPubMedPubMedCentral
51.
go back to reference Barrès R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10:189–98.CrossRefPubMed Barrès R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10:189–98.CrossRefPubMed
52.
go back to reference Nilsson EK, Ernst B, Voisin S, Almén MS, Benedict C, Mwinyi J, et al. Roux-en-Y gastric bypass surgery induces genome-wide promoter-specific changes in DNA methylation in whole blood of obese patients. PLoS ONE. 2015;10:e0115186.CrossRefPubMedPubMedCentral Nilsson EK, Ernst B, Voisin S, Almén MS, Benedict C, Mwinyi J, et al. Roux-en-Y gastric bypass surgery induces genome-wide promoter-specific changes in DNA methylation in whole blood of obese patients. PLoS ONE. 2015;10:e0115186.CrossRefPubMedPubMedCentral
53.
go back to reference Berglind D, Müller P, Willmer M, Sinha I, Tynelius P, Naslund E, et al. Differential methylation in inflammation and type 2 diabetes genes in siblings born before and after maternal bariatric surgery. Obesity. 2016;24:250–61.CrossRefPubMed Berglind D, Müller P, Willmer M, Sinha I, Tynelius P, Naslund E, et al. Differential methylation in inflammation and type 2 diabetes genes in siblings born before and after maternal bariatric surgery. Obesity. 2016;24:250–61.CrossRefPubMed
54.
go back to reference Ahrens M, Ammerpohl O, von Schönfels W, Kolarova J, Bens S, Itzel T, et al. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab. 2013;18:296–302.CrossRefPubMed Ahrens M, Ammerpohl O, von Schönfels W, Kolarova J, Bens S, Itzel T, et al. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab. 2013;18:296–302.CrossRefPubMed
55.
go back to reference Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, et al. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Genome Biol. 2015;16:8.CrossRefPubMedPubMedCentral Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, et al. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Genome Biol. 2015;16:8.CrossRefPubMedPubMedCentral
56.
go back to reference Dahlman I, Sinha I, Gao H, Brodin D, Thorell A, Rydén M, et al. The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. Int J Obes. 2015;39:910–9.CrossRef Dahlman I, Sinha I, Gao H, Brodin D, Thorell A, Rydén M, et al. The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. Int J Obes. 2015;39:910–9.CrossRef
57.
go back to reference Lofgren P, Andersson I, Adolfsson B, Leijonhufvud BM, Hertel K, Hoffstedt J, et al. Long-term prospective and controlled studies demonstrate adipose tissue hypercellularity and relative leptin deficiency in the postobese state. J Clin Endocrinol Metab. 2005;90:6207–13.CrossRefPubMed Lofgren P, Andersson I, Adolfsson B, Leijonhufvud BM, Hertel K, Hoffstedt J, et al. Long-term prospective and controlled studies demonstrate adipose tissue hypercellularity and relative leptin deficiency in the postobese state. J Clin Endocrinol Metab. 2005;90:6207–13.CrossRefPubMed
58.
go back to reference Sethi JK, Vidal-Puig AJ. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007;48:1253–62.CrossRefPubMedPubMedCentral Sethi JK, Vidal-Puig AJ. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007;48:1253–62.CrossRefPubMedPubMedCentral
59.
go back to reference Boström AE, Mwinyi J, Voisin S, Wu W, Schultes B, Zhang K, et al. Longitudinal genome-wide methylation study of Roux-en-Y gastric by-pass patients reveals novel CpG sites associated with essential hypertension. BMC Med Genom. 2016;9:20.CrossRef Boström AE, Mwinyi J, Voisin S, Wu W, Schultes B, Zhang K, et al. Longitudinal genome-wide methylation study of Roux-en-Y gastric by-pass patients reveals novel CpG sites associated with essential hypertension. BMC Med Genom. 2016;9:20.CrossRef
60.
go back to reference Festa A, Williams K, Tracy RP, Wagenknecht LE, Haffner SM. Progression of plasminogen activator inhibitor-1 and fibrinogen levels in relation to incident type 2 diabetes. Circulation. 2006;113:1753–9.CrossRefPubMed Festa A, Williams K, Tracy RP, Wagenknecht LE, Haffner SM. Progression of plasminogen activator inhibitor-1 and fibrinogen levels in relation to incident type 2 diabetes. Circulation. 2006;113:1753–9.CrossRefPubMed
61.
go back to reference Ling C, Del Guerra S, Lupi R, Ro¨nn T, Granhall C, Luthman H, et al. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia. 2008;51:615–22.CrossRefPubMedPubMedCentral Ling C, Del Guerra S, Lupi R, Ro¨nn T, Granhall C, Luthman H, et al. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia. 2008;51:615–22.CrossRefPubMedPubMedCentral
62.
go back to reference Yang BT, Dayeh TA, Kirkpatrick CL, Taneera J, Kumar R, Groop L, et al. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia. 2011;54:360–7.CrossRefPubMed Yang BT, Dayeh TA, Kirkpatrick CL, Taneera J, Kumar R, Groop L, et al. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia. 2011;54:360–7.CrossRefPubMed
63.
go back to reference Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, Jing X, et al. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol. 2012;26:1203–12.CrossRefPubMed Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, Jing X, et al. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol. 2012;26:1203–12.CrossRefPubMed
64.
go back to reference Liu ZH, Chen LL, Deng XL, Song HJ, Liao YF, Zeng TS, et al. Methylation status of CpG sites in the MCP-1 promoter is correlated to serum MCP-1 in type 2 diabetes. J Endocrinol Invest. 2012;35:585–9.PubMed Liu ZH, Chen LL, Deng XL, Song HJ, Liao YF, Zeng TS, et al. Methylation status of CpG sites in the MCP-1 promoter is correlated to serum MCP-1 in type 2 diabetes. J Endocrinol Invest. 2012;35:585–9.PubMed
65.
go back to reference Sala PC, Torrinhas RS, Heymsfield SB, Waitzberg DL. Type 2 diabetes mellitus: a possible surgically reversible intestinal dysfunction. Obes Surg. 2012;22:167–76.CrossRefPubMed Sala PC, Torrinhas RS, Heymsfield SB, Waitzberg DL. Type 2 diabetes mellitus: a possible surgically reversible intestinal dysfunction. Obes Surg. 2012;22:167–76.CrossRefPubMed
66.
go back to reference Sala PC, Torrinhas RS, Giannella-Neto D, Waitzberg DL. Relationship between gut hormones and glucose homeostasis after bariatric surgery. Diabetol Metab Syndr. 2014;6:87.CrossRefPubMedPubMedCentral Sala PC, Torrinhas RS, Giannella-Neto D, Waitzberg DL. Relationship between gut hormones and glucose homeostasis after bariatric surgery. Diabetol Metab Syndr. 2014;6:87.CrossRefPubMedPubMedCentral
67.
go back to reference Sala P, Belarmino G, Machado NM, Cardinelli CS, Al Assal K, Silva MM, et al. The SURMetaGIT study: design and rationale for a prospective pan-omics examination of the gastrointestinal response to Roux-en-Y gastric bypass surgery. J Int Med Res. 2016;44:1359–75.CrossRef Sala P, Belarmino G, Machado NM, Cardinelli CS, Al Assal K, Silva MM, et al. The SURMetaGIT study: design and rationale for a prospective pan-omics examination of the gastrointestinal response to Roux-en-Y gastric bypass surgery. J Int Med Res. 2016;44:1359–75.CrossRef
Metadata
Title
Tissue-specific methylation profile in obese patients with type 2 diabetes before and after Roux-en-Y gastric bypass
Authors
Priscila Sala
Raquel Susana Matos de Miranda Torrinhas
Danielle Cristina Fonseca
Graziela Rosa Ravacci
Dan Linetzky Waitzberg
Daniel Giannella-Neto
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2017
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-017-0214-4

Other articles of this Issue 1/2017

Diabetology & Metabolic Syndrome 1/2017 Go to the issue