Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2016

Open Access 01-12-2016 | Research

The role of adipose tissue and adipokines in the manifestation of type 2 diabetes in the long-term period following myocardial infarction

Authors: Olga Barbarash, Olga Gruzdeva, Evgenya Uchasova, Yulia Dyleva, Ekaterina Belik, Olga Akbasheva, Victoria Karetnikova, Alexander Kokov

Published in: Diabetology & Metabolic Syndrome | Issue 1/2016

Login to get access

Abstract

Background

This study aimed to evaluate the markers of insulin resistance and adipokine status in patients with visceral obesity during hospitalization following myocardial infarction (MI) and assess the disturbances of carbohydrate metabolism present 1 year after MI onset.

Methods

94 male patients with MI were recruited. The exclusion criteria were as follows: age less than 50 or greater than 80 years, the presence of type 2 diabetes mellitus (T2DM), and a prior history of pronounced renal failure.Obesity types were defined according to body mass index (BMI), waist circumference (WC) and visceral adipose tissue (VAT) area. Glucose, insulin, adiponectin, leptin, and insulin resistance (IR) index were measured on days 1 and 12 after the onset of MI. New-onset type 2 diabetes was assessed 1 year after MI onset.

Results

According to computed tomography assessments of all study patients, 69 % of patients with MI suffered from visceral obesity. The VAT area was more closely associated with the risk of developing type 2 diabetes compared with the obesity parameters, BMI and WC. Patients with a VAT area greater than 130 cm2 had a 3.6-fold higher risk of developing type 2 diabetes. The presence of IR and hyperleptinemia increased the risk of developing diabetes in the post-MI period 3.5 and 3.7 times, respectively, in patients with visceral obesity compared with patients without visceral obesity.

Conclusion

Visceral obesity is associated with IR, a 5.7-fold increase in leptin levels and a high risk of developing type 2 diabetes 1 year after MI onset.
Literature
1.
go back to reference Alexopoulos N, Katritsis D, Raggi P. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis. 2014;233(1):104–12.CrossRefPubMed Alexopoulos N, Katritsis D, Raggi P. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis. 2014;233(1):104–12.CrossRefPubMed
2.
go back to reference Bergman RN, Kim SP, Catalano KJ, Hsu IR, Chiu JD, Kabir M, et al. Why visceral fat is bad: mechanisms of the metabolic syndrome. Obesity. 2006;14:16–9.CrossRef Bergman RN, Kim SP, Catalano KJ, Hsu IR, Chiu JD, Kabir M, et al. Why visceral fat is bad: mechanisms of the metabolic syndrome. Obesity. 2006;14:16–9.CrossRef
3.
go back to reference Nicklas BJ, Penninx BW, Cesari M, Kritchevsky SB, Newman AB, Kanaya AM, et al. Association of Visceral Adipose Tissue with Incident Myocardial Infarction in Older Men and Women. Am J Epidemiol. 2004;160(8):741–9.CrossRefPubMed Nicklas BJ, Penninx BW, Cesari M, Kritchevsky SB, Newman AB, Kanaya AM, et al. Association of Visceral Adipose Tissue with Incident Myocardial Infarction in Older Men and Women. Am J Epidemiol. 2004;160(8):741–9.CrossRefPubMed
4.
go back to reference Fontes-Carvalho R, Fontes-Oliveira M, Sampaio F, Mancio J, Bettencourt N, Teixeira M, et al. Influence of epicardial and visceral fat on left ventricular diastolic and systolic functions in patients after myocardial infarction. Am J Cardiol. 2014;114(11):1663–8.CrossRefPubMed Fontes-Carvalho R, Fontes-Oliveira M, Sampaio F, Mancio J, Bettencourt N, Teixeira M, et al. Influence of epicardial and visceral fat on left ventricular diastolic and systolic functions in patients after myocardial infarction. Am J Cardiol. 2014;114(11):1663–8.CrossRefPubMed
5.
go back to reference Oreopoulos A, Ezekowitz JA, McAlister FA, Kalantar-Zadeh K, Fonarow GC, Norris CM, et al. Association between direct measures of body composition and prognostic factors in chronic heart failure. Mayo Clin Proc. 2010;85:609–17.CrossRefPubMedPubMedCentral Oreopoulos A, Ezekowitz JA, McAlister FA, Kalantar-Zadeh K, Fonarow GC, Norris CM, et al. Association between direct measures of body composition and prognostic factors in chronic heart failure. Mayo Clin Proc. 2010;85:609–17.CrossRefPubMedPubMedCentral
6.
go back to reference Dedov II, Shestakova MV. Algorithms for specialized medical care to patients with diabetes. Sakharnyy diabet. 2013;6:120 (Russian). Dedov II, Shestakova MV. Algorithms for specialized medical care to patients with diabetes. Sakharnyy diabet. 2013;6:120 (Russian).
7.
go back to reference Chumakova GA, Veselovskaya NG, Kozarenko AA, Vorobyov YV. The morphology, structure and function of the heart in obese. Russ J Cardiol. 2012;4(96):93–9 (Russian). Chumakova GA, Veselovskaya NG, Kozarenko AA, Vorobyov YV. The morphology, structure and function of the heart in obese. Russ J Cardiol. 2012;4(96):93–9 (Russian).
8.
go back to reference Thygesen K, Alpert J, White HD. Joint ESC/ACCF/AHA/WHF task force for the redefinition of myocardial infarction. Universal definition of myocardial infarction. Circulation. 2007;116:2634–53.CrossRefPubMed Thygesen K, Alpert J, White HD. Joint ESC/ACCF/AHA/WHF task force for the redefinition of myocardial infarction. Universal definition of myocardial infarction. Circulation. 2007;116:2634–53.CrossRefPubMed
10.
go back to reference Oreopoulos A, Padwal R, Norris CM, Kalantar-Zadeh K, Fonarow GC, Norris CM, et al. Effect of obesity on short-and long-term mortality postcoronary revascularization: a meta-analysis. Obesity (silver spring). 2008;16:442–50.CrossRef Oreopoulos A, Padwal R, Norris CM, Kalantar-Zadeh K, Fonarow GC, Norris CM, et al. Effect of obesity on short-and long-term mortality postcoronary revascularization: a meta-analysis. Obesity (silver spring). 2008;16:442–50.CrossRef
11.
go back to reference Kalantar-Zadeh K, Streja E, Molnar MZ, Lukowsky LR, Krishnan M, Kovesdy CP, et al. Mortality prediction by surrogates of body composition: an examination of the obesity paradox in hemodialysis patients using composite ranking score analysis. Am J Epidemiol. 2012;175:793–803.CrossRefPubMedPubMedCentral Kalantar-Zadeh K, Streja E, Molnar MZ, Lukowsky LR, Krishnan M, Kovesdy CP, et al. Mortality prediction by surrogates of body composition: an examination of the obesity paradox in hemodialysis patients using composite ranking score analysis. Am J Epidemiol. 2012;175:793–803.CrossRefPubMedPubMedCentral
12.
go back to reference Gruzdeva OV, Barbarash OL, Akbasheva OE, Palicheva EI, Dyleva Y, Belik EV, et al. The detection of leptin and metabolic markers of insulin resistance in patients with cardiac infarction. Klin Lab Diagn. 2013;2:12–6 (Russian).PubMed Gruzdeva OV, Barbarash OL, Akbasheva OE, Palicheva EI, Dyleva Y, Belik EV, et al. The detection of leptin and metabolic markers of insulin resistance in patients with cardiac infarction. Klin Lab Diagn. 2013;2:12–6 (Russian).PubMed
13.
go back to reference Khafaji HA, Bener AB, Rizk NM. Al Suwaidi J. Elevated serum leptin levels in patients with acute myocardial infarction; correlation with coronary angiographic and echocardiographic findings. BMC Res Notes. 2012;29(5):262.CrossRef Khafaji HA, Bener AB, Rizk NM. Al Suwaidi J. Elevated serum leptin levels in patients with acute myocardial infarction; correlation with coronary angiographic and echocardiographic findings. BMC Res Notes. 2012;29(5):262.CrossRef
14.
go back to reference Soodini GR, Hamdy O. Adiponectin and leptin in relation to insulin sensitivity. Metab Syndr Relat Disord. 2004;2:114–23.CrossRefPubMed Soodini GR, Hamdy O. Adiponectin and leptin in relation to insulin sensitivity. Metab Syndr Relat Disord. 2004;2:114–23.CrossRefPubMed
15.
go back to reference Rajapurohitam V, Javadov S. An autocrine role for leptin in mediating the cardiomyocyte hypertrophic effects of angiotensin II and endothelin-1. J Mol Cell Cardiol. 2006;41(2):265–74.CrossRefPubMed Rajapurohitam V, Javadov S. An autocrine role for leptin in mediating the cardiomyocyte hypertrophic effects of angiotensin II and endothelin-1. J Mol Cell Cardiol. 2006;41(2):265–74.CrossRefPubMed
16.
go back to reference Wallander M, Soderberg S, Norhammar A. Leptin: a predictor of abnormal glucose tolerance and prognosis in patients with myocardial infarction and without previously known Type 2 diabetes. Diabet Med. 2008;25(8):949–55.CrossRefPubMed Wallander M, Soderberg S, Norhammar A. Leptin: a predictor of abnormal glucose tolerance and prognosis in patients with myocardial infarction and without previously known Type 2 diabetes. Diabet Med. 2008;25(8):949–55.CrossRefPubMed
17.
go back to reference Lessard J, Laforest S, Pelletier M, Leboeuf M, Blackburn L, Tchernof A. Low abdominal subcutaneous preadipocyte adipogenesis is associated with visceral obesity, visceral adipocyte hypertrophy, and a dysmetabolic state. Adipocyte. 2014;3:197–205.CrossRefPubMedPubMedCentral Lessard J, Laforest S, Pelletier M, Leboeuf M, Blackburn L, Tchernof A. Low abdominal subcutaneous preadipocyte adipogenesis is associated with visceral obesity, visceral adipocyte hypertrophy, and a dysmetabolic state. Adipocyte. 2014;3:197–205.CrossRefPubMedPubMedCentral
Metadata
Title
The role of adipose tissue and adipokines in the manifestation of type 2 diabetes in the long-term period following myocardial infarction
Authors
Olga Barbarash
Olga Gruzdeva
Evgenya Uchasova
Yulia Dyleva
Ekaterina Belik
Olga Akbasheva
Victoria Karetnikova
Alexander Kokov
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2016
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-016-0136-6

Other articles of this Issue 1/2016

Diabetology & Metabolic Syndrome 1/2016 Go to the issue