Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2018

Open Access 01-12-2018 | Research article

Anti-CD11b antibody treatment suppresses the osteoclast generation, inflammatory cell infiltration, and autoantibody production in arthritis-prone FcγRIIB-deficient mice

Authors: Mareki Ohtsuji, Qingshun Lin, Hideki Okazaki, Kazuko Takahashi, Hirofumi Amano, Hideo Yagita, Hiroyuki Nishimura, Sachiko Hirose

Published in: Arthritis Research & Therapy | Issue 1/2018

Login to get access

Abstract

Background

Previously we established an arthritis-prone FcγRIIB-deficient mouse strain (designated KO1). Anti-mouse CD11b mAb (5C6) has been reported to inhibit the recruitment of peripheral CD11b+ myelomonocytic cells from the blood to the inflammatory site. These cells include neutrophils and monocytes, both of which play important roles in the development of arthritis. Here we treated KO1 mice with 5C6 mAb in order to study its effect on arthritis development.

Methods

To evaluate the disease-preventive effect of 5C6, 4-month-old preclinical KO1 mice were divided into three groups: the first treated with 5C6 for 6 months, the second treated with normal rat IgG for 6 months, as a control, and the third left untreated. Arthritis severity and immunological abnormalities were compared among the groups, along with transcriptional levels of several important arthritis-related factors in ankle joints, spleen, and peripheral blood cells.

Results

The 5C6 treatment ameliorated arthritis in KO1 mice, showing decreases in inflammatory cell infiltration and osteoclast formation. Analysis of transcriptional levels in ankle joints revealed that compared with the two control groups, the 5C6-treated group showed downregulated expression of RANK, RANKL, MCP-1, RANTES, TNFα, and IL-6, and at the same time showed significantly up-regulated expression of the decoy receptor for RANKL, i.e. osteoprotegerin. In addition, the disease suppression was associated with the lower serum levels of autoantibodies, and the decreased frequencies of activated B cells and plasma cells. The expression levels of B cell activation/differentiation-related cytokines were suppressed in spleen and peripheral leukocytes of the 5C6-treated mice. Intriguingly, while untreated KO1 mice spontaneously developed marked monocytosis, the 5C6-treated mice showed the significantly down-regulated frequency of monocytes.

Conclusions

The outcome of 5C6 treatment was complex, in which the 5C6-mediated disease-preventive effect is likely due on one hand to the decrease in the recruitment of inflammatory cells and osteoclast precursor monocytes from the periphery into the joints, and on the other hand to the suppression of B cell activation/maturation and of autoantibody production via the suppression of B cell stimulating cytokine production. The lower levels of these cytokines may be the secondary effect of the lower frequency of monocytes, since monocytes/macrophages are the major producers of these cytokines.
Literature
1.
go back to reference Connor JR, Dodds RA, James IE, Gowen M. Human osteoclast and giant cell differentiation: the apparent switch from nonspecific esterase to tartrate resistant acid phosphatase activity coincides with the in situ expression of osteopontin mRNA. J Histochem Cytochem. 1995;43:1193–201.CrossRefPubMed Connor JR, Dodds RA, James IE, Gowen M. Human osteoclast and giant cell differentiation: the apparent switch from nonspecific esterase to tartrate resistant acid phosphatase activity coincides with the in situ expression of osteopontin mRNA. J Histochem Cytochem. 1995;43:1193–201.CrossRefPubMed
2.
go back to reference Dodds RA, Connor JR, Drake FH, Gowen M. Expression of cathepsin K messenger RNA in giant cells and their precursors in human osteoarthritic synovial tissues. Arthritis Rheum. 1999;42:1588–93.CrossRefPubMed Dodds RA, Connor JR, Drake FH, Gowen M. Expression of cathepsin K messenger RNA in giant cells and their precursors in human osteoarthritic synovial tissues. Arthritis Rheum. 1999;42:1588–93.CrossRefPubMed
3.
go back to reference Boyle W, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.CrossRefPubMed Boyle W, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.CrossRefPubMed
4.
5.
go back to reference Takayanagi H. Osteoimmunology and the effect of the immune system on bone. Nat Rev Rheumatol. 2009;5:667–76.CrossRefPubMed Takayanagi H. Osteoimmunology and the effect of the immune system on bone. Nat Rev Rheumatol. 2009;5:667–76.CrossRefPubMed
6.
go back to reference Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, et al. Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol. 2006;24:33–63.CrossRefPubMed Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, et al. Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol. 2006;24:33–63.CrossRefPubMed
7.
go back to reference Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203:2673–82.CrossRefPubMedPubMedCentral Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203:2673–82.CrossRefPubMedPubMedCentral
8.
go back to reference Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–19.CrossRefPubMed Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–19.CrossRefPubMed
9.
go back to reference Mclnnes JB, Schett G. Cytokines in the pathogeneses of rheumatoid arthritis. Nat Rev Immunol. 2007;7:429–42.CrossRef Mclnnes JB, Schett G. Cytokines in the pathogeneses of rheumatoid arthritis. Nat Rev Immunol. 2007;7:429–42.CrossRef
10.
go back to reference Sato-Hayashizaki A, Ohtsuji M, Lin Q, Hou R, Ohtsuji N, Nishikawa K, et al. Presumptive role of 129 strain-derived Sle16 locus in rheumatoid arthritis in a new mouse model with Fcγ receptor Type IIb-deficient C57BL/6 genetic background. Arthr Rheum. 2011;63:2930–8.CrossRef Sato-Hayashizaki A, Ohtsuji M, Lin Q, Hou R, Ohtsuji N, Nishikawa K, et al. Presumptive role of 129 strain-derived Sle16 locus in rheumatoid arthritis in a new mouse model with Fcγ receptor Type IIb-deficient C57BL/6 genetic background. Arthr Rheum. 2011;63:2930–8.CrossRef
11.
go back to reference Okazaki H, Lin Q, Nishikawa K, Ohtsuji N, Tsurui H, Ohtsuji M, et al. TNFα but not IL-17 is critical in the pathogenesis of rheumatoid arthritis spontaneously occurring in a unique FcγRIIB-deficient mouse model. Mod Rheumatol. 2014;24:931–8.CrossRefPubMed Okazaki H, Lin Q, Nishikawa K, Ohtsuji N, Tsurui H, Ohtsuji M, et al. TNFα but not IL-17 is critical in the pathogenesis of rheumatoid arthritis spontaneously occurring in a unique FcγRIIB-deficient mouse model. Mod Rheumatol. 2014;24:931–8.CrossRefPubMed
12.
go back to reference Ohtsuji M, Lin Q, Nishikawa K, Ohtsuji N, Okazaki H, Tsurui H, et al. IL-6 signal blockade ameliorates the enhanced osteoclastogenesis and the associated joint destruction in a novel FcγRIIB-deficient rheumatoid arthritis mouse model. Mod Rheumatol. 2015;25:270–7.CrossRefPubMed Ohtsuji M, Lin Q, Nishikawa K, Ohtsuji N, Okazaki H, Tsurui H, et al. IL-6 signal blockade ameliorates the enhanced osteoclastogenesis and the associated joint destruction in a novel FcγRIIB-deficient rheumatoid arthritis mouse model. Mod Rheumatol. 2015;25:270–7.CrossRefPubMed
13.
go back to reference Rosen H, Gordon S. Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and inflammatory cell recruitment in vivo. J Exp Med. 1987;166:1685–701.CrossRefPubMed Rosen H, Gordon S. Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and inflammatory cell recruitment in vivo. J Exp Med. 1987;166:1685–701.CrossRefPubMed
14.
go back to reference Wipke BT, Allen PM. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J Immunol. 2001;167:1601–8.CrossRefPubMed Wipke BT, Allen PM. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J Immunol. 2001;167:1601–8.CrossRefPubMed
15.
go back to reference Abe Y, Ohtsuji M, Ohtsuji N, Lin Q, Tsurui H, Nakae S, et al. Ankylosing enthesitis associated with up-regulated IFN-γ and IL-17 production in (BXSB x NZB) F1 male mice: a new mouse model. Mod Rheumatol. 2009;19:316–22.CrossRefPubMed Abe Y, Ohtsuji M, Ohtsuji N, Lin Q, Tsurui H, Nakae S, et al. Ankylosing enthesitis associated with up-regulated IFN-γ and IL-17 production in (BXSB x NZB) F1 male mice: a new mouse model. Mod Rheumatol. 2009;19:316–22.CrossRefPubMed
16.
go back to reference Iwamoto T, Okamoto H, Toyama Y, Momohara S. Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J. 2008;275:4448–55.CrossRefPubMed Iwamoto T, Okamoto H, Toyama Y, Momohara S. Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J. 2008;275:4448–55.CrossRefPubMed
17.
go back to reference Kikuchi S, Santiago-Raber M-L, Amano H, Amano E, Fossati-Jimack L, Moll T, et al. Contribution of NZB autoimmunity 2 to Y-linked autoimmune acceleration-induced monocytosis in association with murine systemic lupus. J Immunol. 2006;176:3240–7.CrossRefPubMed Kikuchi S, Santiago-Raber M-L, Amano H, Amano E, Fossati-Jimack L, Moll T, et al. Contribution of NZB autoimmunity 2 to Y-linked autoimmune acceleration-induced monocytosis in association with murine systemic lupus. J Immunol. 2006;176:3240–7.CrossRefPubMed
18.
go back to reference Hashizume M, Hayakawa N, Mihara M. IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-α and IL-17. Rheumatology. 2008;47:1635–40.CrossRefPubMed Hashizume M, Hayakawa N, Mihara M. IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-α and IL-17. Rheumatology. 2008;47:1635–40.CrossRefPubMed
19.
go back to reference Yun TJ, Chaudhary PM, Shu GL, Frazer JK, Ewing MK, Schwartz SM, et al. OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol. 1998;161:6113–21.PubMed Yun TJ, Chaudhary PM, Shu GL, Frazer JK, Ewing MK, Schwartz SM, et al. OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol. 1998;161:6113–21.PubMed
20.
go back to reference Zannettio ACW, Holding CA, Diamond P, Atkins GJ, Kostakis P, Farrugia A, et al. Osteoprotegerin (0PG) is localized to the Weibel-Palade bodies of human vascular endothelial cells and is physically associated with von Willebrand factor. J Cell Physiol. 2005;204:714–23.CrossRef Zannettio ACW, Holding CA, Diamond P, Atkins GJ, Kostakis P, Farrugia A, et al. Osteoprotegerin (0PG) is localized to the Weibel-Palade bodies of human vascular endothelial cells and is physically associated with von Willebrand factor. J Cell Physiol. 2005;204:714–23.CrossRef
21.
go back to reference Catrina AI, Klint E, Ernestam S, Catrina S-B, Makrygiannakis D, Botusan IR, et al. Anti-tumor necrosis factor therapy increases synovial osteoprotegerin expression in rheumatoid arthritis. Arthritis Rheum. 2006;54:76–81.CrossRefPubMed Catrina AI, Klint E, Ernestam S, Catrina S-B, Makrygiannakis D, Botusan IR, et al. Anti-tumor necrosis factor therapy increases synovial osteoprotegerin expression in rheumatoid arthritis. Arthritis Rheum. 2006;54:76–81.CrossRefPubMed
24.
go back to reference Bolland S, Ravetch JV. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity. 2000;13:277–85.CrossRefPubMed Bolland S, Ravetch JV. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity. 2000;13:277–85.CrossRefPubMed
25.
go back to reference Kim MS, Day CJ, Morrison NA. MCP-1 is induced by receptor activator of nuclear factor-κB ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. J Biol Chem. 2005;280:16163–9.CrossRefPubMed Kim MS, Day CJ, Morrison NA. MCP-1 is induced by receptor activator of nuclear factor-κB ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. J Biol Chem. 2005;280:16163–9.CrossRefPubMed
26.
go back to reference Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19:71–82.CrossRefPubMed Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19:71–82.CrossRefPubMed
27.
go back to reference Santiago-Raber M-L, Amano H, Amano E, Baudino L, Otani M, Lin Q, et al. FcγR-dependent expansion of a hyperactive monocyte subset in lupus-prone mice. Arthritis Rheum. 2009;60:2408–17.CrossRefPubMed Santiago-Raber M-L, Amano H, Amano E, Baudino L, Otani M, Lin Q, et al. FcγR-dependent expansion of a hyperactive monocyte subset in lupus-prone mice. Arthritis Rheum. 2009;60:2408–17.CrossRefPubMed
28.
go back to reference Yao Z, Li P, Zhang Q, Schwarz EM, Keng P, Arbini A, et al. Tumor necrosis factor-α increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. J Biol Chem. 2006;281:11846–55.CrossRefPubMed Yao Z, Li P, Zhang Q, Schwarz EM, Keng P, Arbini A, et al. Tumor necrosis factor-α increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. J Biol Chem. 2006;281:11846–55.CrossRefPubMed
29.
go back to reference Seeling M, Hillenhoff U, David JP, Schett G, Tuckermann J, Lux A, et al. Inflammatory monocytes and Fcγ receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice. Proc Nalt Acad Sci USA. 2013;110:10729–34.CrossRef Seeling M, Hillenhoff U, David JP, Schett G, Tuckermann J, Lux A, et al. Inflammatory monocytes and Fcγ receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice. Proc Nalt Acad Sci USA. 2013;110:10729–34.CrossRef
30.
go back to reference Mackey F, Browning JL. BAFF: a fundamental survival factor for B cells. Nat Rev Immunol. 2002;2:465–75.CrossRef Mackey F, Browning JL. BAFF: a fundamental survival factor for B cells. Nat Rev Immunol. 2002;2:465–75.CrossRef
31.
32.
go back to reference Nakae S, Asano M, Horai R, Iwakura Y. Interleukin-1β, but not interleukin-1α, is required for T-cell-dependent antibody production. Immunology. 2001;104:402–9.CrossRefPubMedPubMedCentral Nakae S, Asano M, Horai R, Iwakura Y. Interleukin-1β, but not interleukin-1α, is required for T-cell-dependent antibody production. Immunology. 2001;104:402–9.CrossRefPubMedPubMedCentral
33.
go back to reference Maliszewski CR, Sato TA, Vanden Bos T, Waugh S, Dower SK, Slack J, et al. Cytokine receptors and B cell functions. I. Recombinant soluble receptors specifically inhibit IL-1- and IL-4-induced B cell activities in vitro. J Immunol. 1990;144:3028–33.PubMed Maliszewski CR, Sato TA, Vanden Bos T, Waugh S, Dower SK, Slack J, et al. Cytokine receptors and B cell functions. I. Recombinant soluble receptors specifically inhibit IL-1- and IL-4-induced B cell activities in vitro. J Immunol. 1990;144:3028–33.PubMed
34.
go back to reference Senaldi G, Varnum BC, Sarmiento U, Starnes C, Lile J, Scully S, et al. Novel neurotrophin-1/B cell-stimulation factor-3: a cytokine of the IL-6 family. Proc Nalt Acad Sci USA. 1999;96:11458–63.CrossRef Senaldi G, Varnum BC, Sarmiento U, Starnes C, Lile J, Scully S, et al. Novel neurotrophin-1/B cell-stimulation factor-3: a cytokine of the IL-6 family. Proc Nalt Acad Sci USA. 1999;96:11458–63.CrossRef
35.
go back to reference Senaldi G, Stolina M, Guo J, Faggioni R, McCabe S, Kaufman SA, et al. Regulatory effects of novel neurotrophin-1/b cell-stimulating factor-3 (cardiotrophin-like cytokine) on B cell function. J Immunol. 2002;168:5690–8.CrossRefPubMed Senaldi G, Stolina M, Guo J, Faggioni R, McCabe S, Kaufman SA, et al. Regulatory effects of novel neurotrophin-1/b cell-stimulating factor-3 (cardiotrophin-like cytokine) on B cell function. J Immunol. 2002;168:5690–8.CrossRefPubMed
Metadata
Title
Anti-CD11b antibody treatment suppresses the osteoclast generation, inflammatory cell infiltration, and autoantibody production in arthritis-prone FcγRIIB-deficient mice
Authors
Mareki Ohtsuji
Qingshun Lin
Hideki Okazaki
Kazuko Takahashi
Hirofumi Amano
Hideo Yagita
Hiroyuki Nishimura
Sachiko Hirose
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2018
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-018-1523-1

Other articles of this Issue 1/2018

Arthritis Research & Therapy 1/2018 Go to the issue