Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2017

Open Access 01-12-2017 | Research article

Targeted proteomics reveals promising biomarkers of disease activity and organ involvement in antineutrophil cytoplasmic antibody-associated vasculitis

Authors: Jun Ishizaki, Ayako Takemori, Koichiro Suemori, Takuya Matsumoto, Yoko Akita, Ken-ei Sada, Yukio Yuzawa, Koichi Amano, Yoshinari Takasaki, Masayoshi Harigai, Yoshihiro Arimura, Hirofumi Makino, Masaki Yasukawa, Nobuaki Takemori, Hitoshi Hasegawa, for the Research Committee of Intractable Vasculitis Syndrome and the Research Committee of Intractable Renal Disease of the Ministry of Health, Labour and Welfare of Japan

Published in: Arthritis Research & Therapy | Issue 1/2017

Login to get access

Abstract

Background

Targeted proteomics, which involves quantitative analysis of targeted proteins using selected reaction monitoring (SRM) mass spectrometry, has emerged as a new methodology for discovery of clinical biomarkers. In this study, we used targeted serum proteomics to identify circulating biomarkers for prediction of disease activity and organ involvement in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV).

Methods

A large-scale SRM assay targeting 135 biomarker candidates was established using a triple-quadrupole mass spectrometer coupled with nanoflow liquid chromatography. Target proteins in serum samples from patients in the active and remission (6 months after treatment) stages were quantified using the established assays. Identified marker candidates were further validated by enzyme-linked immunosorbent assay using serum samples (n = 169) collected in a large-cohort Japanese study (the RemIT-JAV-RPGN study).

Results

Our proteomic analysis identified the following proteins as biomarkers for discriminating patients with highly active AAV from those in remission or healthy control subjects: tenascin C (TNC), C-reactive protein (CRP), tissue inhibitor of metalloproteinase 1 (TIMP1), leucine-rich alpha-2-glycoprotein 1, S100A8/A9, CD93, matrix metalloproteinase 9, and transketolase (TKT). Of these, TIMP1 was the best-performing marker of disease activity, allowing distinction between mildly active AAV and remission. Moreover, in contrast to CRP, serum levels of TIMP1 in patients with active AAV were significantly higher than those in patients with infectious diseases. The serum levels of TKT and CD93 were higher in patients with renal involvement than in those without, and they predicted kidney outcome. The level of circulating TNC was elevated significantly in patients with lung infiltration. AAV severity was associated with markers reflecting organ involvement (TKT, CD93, and TNC) rather than inflammation. The eight markers and myeloperoxidase (MPO)-ANCA were clustered into three groups: MPO-ANCA, renal involvement (TKT and CD93), and inflammation (the other six markers).

Conclusions

We have identified promising biomarkers of disease activity, disease severity, and organ involvement in AAV with a targeted proteomics approach using serum samples obtained from a large-cohort Japanese study. Especially, our analysis demonstrated the effectiveness of TIMP1 as a marker of AAV activity. In addition, we identified TKT and CD93 as novel markers for evaluation of renal involvement and kidney outcome in AAV.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65(1):1–11.CrossRefPubMed Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65(1):1–11.CrossRefPubMed
2.
go back to reference Xiao H, Hu P, Falk RJ, Jennette JC. Overview of the pathogenesis of ANCA-associated vasculitis. Kidney Dis (Basel). 2016;1(4):205–15.CrossRef Xiao H, Hu P, Falk RJ, Jennette JC. Overview of the pathogenesis of ANCA-associated vasculitis. Kidney Dis (Basel). 2016;1(4):205–15.CrossRef
3.
go back to reference Falk RJ, Hoffman GS. Controversies in small vessel vasculitis – comparing the rheumatology and nephrology views. Curr Opin Rheumatol. 2007;19(1):1–9.PubMed Falk RJ, Hoffman GS. Controversies in small vessel vasculitis – comparing the rheumatology and nephrology views. Curr Opin Rheumatol. 2007;19(1):1–9.PubMed
4.
go back to reference Boomsma MM, Stegeman CA, van der Leij MJ, Oost W, Hermans J, Kallenberg CG, et al. Prediction of relapses in Wegener’s granulomatosis by measurement of antineutrophil cytoplasmic antibody levels: a prospective study. Arthritis Rheum. 2000;43(9):2025–33.CrossRefPubMed Boomsma MM, Stegeman CA, van der Leij MJ, Oost W, Hermans J, Kallenberg CG, et al. Prediction of relapses in Wegener’s granulomatosis by measurement of antineutrophil cytoplasmic antibody levels: a prospective study. Arthritis Rheum. 2000;43(9):2025–33.CrossRefPubMed
5.
go back to reference Girard T, Mahr A, Noël LH, Cordier JF, Lesavre P, André MH, et al. Are antineutrophil cytoplasmic antibodies a marker predictive of relapse in Wegener’s granulomatosis? A prospective study. Rheumatology (Oxford). 2001;40(2):147–51.CrossRef Girard T, Mahr A, Noël LH, Cordier JF, Lesavre P, André MH, et al. Are antineutrophil cytoplasmic antibodies a marker predictive of relapse in Wegener’s granulomatosis? A prospective study. Rheumatology (Oxford). 2001;40(2):147–51.CrossRef
6.
go back to reference Birck R, Schmitt WH, Kaelsch IA, van der Woude FJ. Serial ANCA determinations for monitoring disease activity in patients with ANCA-associated vasculitis: systematic review. Am J Kidney Dis. 2006;47(1):15–23.CrossRefPubMed Birck R, Schmitt WH, Kaelsch IA, van der Woude FJ. Serial ANCA determinations for monitoring disease activity in patients with ANCA-associated vasculitis: systematic review. Am J Kidney Dis. 2006;47(1):15–23.CrossRefPubMed
7.
go back to reference Tomasson G, Grayson PC, Mahr AD, Lavalley M, Merkel PA. Value of ANCA measurements during remission to predict a relapse of ANCA-associated vasculitis—a meta-analysis. Rheumatology (Oxford). 2012;51(1):100–9.CrossRef Tomasson G, Grayson PC, Mahr AD, Lavalley M, Merkel PA. Value of ANCA measurements during remission to predict a relapse of ANCA-associated vasculitis—a meta-analysis. Rheumatology (Oxford). 2012;51(1):100–9.CrossRef
8.
go back to reference Monach PA, Tomasson G, Specks U, Stone JH, Cuthbertson D, Krischer J, et al. Circulating markers of vascular injury and angiogenesis in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 2011;63(12):3988–97.CrossRefPubMedPubMedCentral Monach PA, Tomasson G, Specks U, Stone JH, Cuthbertson D, Krischer J, et al. Circulating markers of vascular injury and angiogenesis in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 2011;63(12):3988–97.CrossRefPubMedPubMedCentral
9.
go back to reference Monach PA, Warner RL, Tomasson G, Specks U, Stone JH, Ding L, et al. Serum proteins reflecting inflammation, injury and repair as biomarkers of disease activity in ANCA-associated vasculitis. Ann Rheum Dis. 2013;72(8):1342–50.CrossRefPubMed Monach PA, Warner RL, Tomasson G, Specks U, Stone JH, Ding L, et al. Serum proteins reflecting inflammation, injury and repair as biomarkers of disease activity in ANCA-associated vasculitis. Ann Rheum Dis. 2013;72(8):1342–50.CrossRefPubMed
10.
go back to reference Gou SJ, Yuan J, Chen M, Yu F, Zhao MH. Circulating complement activation in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Kidney Int. 2013;83(1):129–37.CrossRefPubMed Gou SJ, Yuan J, Chen M, Yu F, Zhao MH. Circulating complement activation in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Kidney Int. 2013;83(1):129–37.CrossRefPubMed
11.
go back to reference Brix SR, Stege G, Disteldorf E, Hoxha E, Krebs C, Krohn S, et al. CC chemokine ligand 18 in ANCA-associated crescentic GN. J Am Soc Nephrol. 2015;26(9):2105–17.CrossRefPubMedPubMedCentral Brix SR, Stege G, Disteldorf E, Hoxha E, Krebs C, Krohn S, et al. CC chemokine ligand 18 in ANCA-associated crescentic GN. J Am Soc Nephrol. 2015;26(9):2105–17.CrossRefPubMedPubMedCentral
12.
go back to reference Villacorta J, Diaz-Crespo F, Acevedo M, Cavero T, Guerrero C, Praga M, et al. Circulating C3 levels predict renal and global outcome in patients with renal vasculitis. Clin Rheumatol. 2016;35(11):2733–40.CrossRefPubMed Villacorta J, Diaz-Crespo F, Acevedo M, Cavero T, Guerrero C, Praga M, et al. Circulating C3 levels predict renal and global outcome in patients with renal vasculitis. Clin Rheumatol. 2016;35(11):2733–40.CrossRefPubMed
13.
go back to reference Pepper RJ, Draibe JB, Caplin B, Fervenza FC, Hoffman GS, Kallenberg CG, et al. The association of serum calprotectin (S100A8/S100A9) levels with disease relapses in PR3-ANCA-associated vasculitis. Arthritis Rheumatol. 2016;69(1):185–93.CrossRef Pepper RJ, Draibe JB, Caplin B, Fervenza FC, Hoffman GS, Kallenberg CG, et al. The association of serum calprotectin (S100A8/S100A9) levels with disease relapses in PR3-ANCA-associated vasculitis. Arthritis Rheumatol. 2016;69(1):185–93.CrossRef
14.
go back to reference Kronbichler A, Kerschbaum J, Gründlinger G, Leierer J, Mayer G, Rudnicki M. Evaluation and validation of biomarkers in granulomatosis with polyangiitis and microscopic polyangiitis. Nephrol Dial Transplant. 2016;31(6):930–6.CrossRefPubMed Kronbichler A, Kerschbaum J, Gründlinger G, Leierer J, Mayer G, Rudnicki M. Evaluation and validation of biomarkers in granulomatosis with polyangiitis and microscopic polyangiitis. Nephrol Dial Transplant. 2016;31(6):930–6.CrossRefPubMed
15.
go back to reference Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9(6):555–66.CrossRefPubMed Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9(6):555–66.CrossRefPubMed
16.
go back to reference Hüttenhain R, Soste M, Selevsek N, Röst H, Sethi A, Carapito C, 142, et al. Reproducible quantification of cancer-associated proteins in body fluids using targeted proteomics. Sci Transl Med. 2012;4:142ra94.CrossRefPubMedPubMedCentral Hüttenhain R, Soste M, Selevsek N, Röst H, Sethi A, Carapito C, 142, et al. Reproducible quantification of cancer-associated proteins in body fluids using targeted proteomics. Sci Transl Med. 2012;4:142ra94.CrossRefPubMedPubMedCentral
17.
18.
go back to reference Kennedy JJ, Abbatiello SE, Kim K, Yan P, Whiteaker JR, Lin C, et al. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nat Methods. 2014;11(2):149–55.CrossRefPubMed Kennedy JJ, Abbatiello SE, Kim K, Yan P, Whiteaker JR, Lin C, et al. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nat Methods. 2014;11(2):149–55.CrossRefPubMed
19.
go back to reference Surinova S, Choi M, Tao S, Schüffler PJ, Chang CY, Clough T, et al. Prediction of colorectal cancer diagnosis based on circulating plasma proteins. EMBO Mol Med. 2015;7(9):1166–78.CrossRefPubMedPubMedCentral Surinova S, Choi M, Tao S, Schüffler PJ, Chang CY, Clough T, et al. Prediction of colorectal cancer diagnosis based on circulating plasma proteins. EMBO Mol Med. 2015;7(9):1166–78.CrossRefPubMedPubMedCentral
20.
go back to reference Surinova S, Radová L, Choi M, Srovnal J, Brenner H, Vitek O, et al. Non-invasive prognostic protein biomarker signatures associated with colorectal cancer. EMBO Mol Med. 2015;7(9):1153–65.CrossRefPubMedPubMedCentral Surinova S, Radová L, Choi M, Srovnal J, Brenner H, Vitek O, et al. Non-invasive prognostic protein biomarker signatures associated with colorectal cancer. EMBO Mol Med. 2015;7(9):1153–65.CrossRefPubMedPubMedCentral
21.
go back to reference Takemori N, Takemori A, Matsuoka K, Morishita R, Matsushita N, Aoshima M, et al. High-throughput synthesis of stable isotope-labeled transmembrane proteins for targeted transmembrane proteomics using a wheat germ cell-free protein synthesis system. Mol Biosyst. 2015;11(2):361–5.CrossRefPubMed Takemori N, Takemori A, Matsuoka K, Morishita R, Matsushita N, Aoshima M, et al. High-throughput synthesis of stable isotope-labeled transmembrane proteins for targeted transmembrane proteomics using a wheat germ cell-free protein synthesis system. Mol Biosyst. 2015;11(2):361–5.CrossRefPubMed
22.
go back to reference Kim Y, Jeon J, Mejia S, Yao CQ, Ignatchenko V, Nyalwidhe JO, et al. Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer. Nat Commun. 2016;7:11906.CrossRefPubMedPubMedCentral Kim Y, Jeon J, Mejia S, Yao CQ, Ignatchenko V, Nyalwidhe JO, et al. Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer. Nat Commun. 2016;7:11906.CrossRefPubMedPubMedCentral
23.
go back to reference Kusebauch U, Campbell DS, Deutsch EW, Chu CS, Spicer DA, Brusniak MY, et al. Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome. Cell. 2016;166(3):766–78.CrossRefPubMedPubMedCentral Kusebauch U, Campbell DS, Deutsch EW, Chu CS, Spicer DA, Brusniak MY, et al. Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome. Cell. 2016;166(3):766–78.CrossRefPubMedPubMedCentral
24.
go back to reference Takemori N, Takemori A, Tanaka Y, Ishizaki J, Hasegawa H, Shiraishi A, et al. High-throughput production of a stable isotope-labeled peptide library for targeted proteomics using a wheat germ cell-free synthesis system. Mol Biosyst. 2016;12(8):2389–93.CrossRefPubMed Takemori N, Takemori A, Tanaka Y, Ishizaki J, Hasegawa H, Shiraishi A, et al. High-throughput production of a stable isotope-labeled peptide library for targeted proteomics using a wheat germ cell-free synthesis system. Mol Biosyst. 2016;12(8):2389–93.CrossRefPubMed
25.
go back to reference Sada KE, Harigai M, Amano K, Atsumi T, Fujimoto S, Yuzawa Y, et al. Comparison of severity classification in Japanese patients with antineutrophil cytoplasmic antibody-associated vasculitis in a nationwide, prospective, inception cohort study. Mod Rheumatol. 2016;26(5):730–7.CrossRefPubMed Sada KE, Harigai M, Amano K, Atsumi T, Fujimoto S, Yuzawa Y, et al. Comparison of severity classification in Japanese patients with antineutrophil cytoplasmic antibody-associated vasculitis in a nationwide, prospective, inception cohort study. Mod Rheumatol. 2016;26(5):730–7.CrossRefPubMed
26.
go back to reference Watts R, Lane S, Hanslik T, Hauser T, Hellmich B, Koldingsnes W, et al. Development and validation of a consensus methodology for the classification of the ANCA-associated vasculitides and polyarteritis nodosa for epidemiological studies. Ann Rheum Dis. 2007;66(2):222–7.CrossRefPubMed Watts R, Lane S, Hanslik T, Hauser T, Hellmich B, Koldingsnes W, et al. Development and validation of a consensus methodology for the classification of the ANCA-associated vasculitides and polyarteritis nodosa for epidemiological studies. Ann Rheum Dis. 2007;66(2):222–7.CrossRefPubMed
27.
go back to reference Neogi T, Aletaha D, Silman AJ, Naden RL, Felson DT, Aggarwal R, et al. The 2010 American College of Rheumatology/European League Against Rheumatism classification criteria for rheumatoid arthritis: phase 2 methodological report. Arthritis Rheum. 2010;62(9):2582–91.CrossRefPubMedPubMedCentral Neogi T, Aletaha D, Silman AJ, Naden RL, Felson DT, Aggarwal R, et al. The 2010 American College of Rheumatology/European League Against Rheumatism classification criteria for rheumatoid arthritis: phase 2 methodological report. Arthritis Rheum. 2010;62(9):2582–91.CrossRefPubMedPubMedCentral
28.
go back to reference Smolen JS, Breedveld FC, Schiff MH, Kalden JR, Emery P, Eberl G, et al. A simplified disease activity index for rheumatoid arthritis for use in clinical practice. Rheumatology (Oxford). 2003;42(2):244–57.CrossRef Smolen JS, Breedveld FC, Schiff MH, Kalden JR, Emery P, Eberl G, et al. A simplified disease activity index for rheumatoid arthritis for use in clinical practice. Rheumatology (Oxford). 2003;42(2):244–57.CrossRef
29.
go back to reference Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40(9):1725.CrossRefPubMed Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40(9):1725.CrossRefPubMed
30.
go back to reference Gladman DD, Ibañez D, Urowitz MB. Systemic Lupus Erythematosus Disease Activity Index 2000. J Rheumatol. 2002;29(2):288–91.PubMed Gladman DD, Ibañez D, Urowitz MB. Systemic Lupus Erythematosus Disease Activity Index 2000. J Rheumatol. 2002;29(2):288–91.PubMed
31.
go back to reference Mukhtyar C, Lee R, Brown D, Carruthers D, Dasgupta B, Dubey S, et al. Modification and validation of the Birmingham Vasculitis Activity Score (version 3). Ann Rheum Dis. 2009;68(12):1827–32.CrossRefPubMed Mukhtyar C, Lee R, Brown D, Carruthers D, Dasgupta B, Dubey S, et al. Modification and validation of the Birmingham Vasculitis Activity Score (version 3). Ann Rheum Dis. 2009;68(12):1827–32.CrossRefPubMed
32.
go back to reference Hellmich B, Flossmann O, Gross WL, Bacon P, Cohen-Tervaert JW, Guillevin L, et al. EULAR recommendations for conducting clinical studies and/or clinical trials in systemic vasculitis: focus on anti-neutrophil cytoplasm antibody-associated vasculitis. Ann Rheum Dis. 2007;66(5):605–17.CrossRefPubMed Hellmich B, Flossmann O, Gross WL, Bacon P, Cohen-Tervaert JW, Guillevin L, et al. EULAR recommendations for conducting clinical studies and/or clinical trials in systemic vasculitis: focus on anti-neutrophil cytoplasm antibody-associated vasculitis. Ann Rheum Dis. 2007;66(5):605–17.CrossRefPubMed
33.
go back to reference Koyama A, Yamagata K, Makino H, Arimura Y, Wada T, Nitta K, et al. A nationwide survey of rapidly progressive glomerulonephritis in Japan: etiology, prognosis and treatment diversity. Clin Exp Nephrol. 2009;13(6):633–50.CrossRefPubMed Koyama A, Yamagata K, Makino H, Arimura Y, Wada T, Nitta K, et al. A nationwide survey of rapidly progressive glomerulonephritis in Japan: etiology, prognosis and treatment diversity. Clin Exp Nephrol. 2009;13(6):633–50.CrossRefPubMed
34.
go back to reference Guillevin L, Pagnoux C, Seror R, Mahr A, Mouthon L, Le Toumelin P, et al. The Five-Factor Score revisited: assessment of prognoses of systemic necrotizing vasculitides based on the French Vasculitis Study Group (FVSG) cohort. Medicine (Baltimore). 2011;90(1):19–27.CrossRef Guillevin L, Pagnoux C, Seror R, Mahr A, Mouthon L, Le Toumelin P, et al. The Five-Factor Score revisited: assessment of prognoses of systemic necrotizing vasculitides based on the French Vasculitis Study Group (FVSG) cohort. Medicine (Baltimore). 2011;90(1):19–27.CrossRef
35.
go back to reference Takemori N, Takemori A, Ishizaki J, Hasegawa H. Enzymatic protein digestion using a dissolvable polyacrylamide gel and its application to mass spectrometry-based proteomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;967:36–40.CrossRefPubMed Takemori N, Takemori A, Ishizaki J, Hasegawa H. Enzymatic protein digestion using a dissolvable polyacrylamide gel and its application to mass spectrometry-based proteomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;967:36–40.CrossRefPubMed
36.
go back to reference MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26(7):966–8.CrossRefPubMedPubMedCentral MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26(7):966–8.CrossRefPubMedPubMedCentral
37.
go back to reference Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics. 1998;14(8):656–64.CrossRefPubMed Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics. 1998;14(8):656–64.CrossRefPubMed
38.
go back to reference Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010;28(12):1248–50.CrossRefPubMed Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010;28(12):1248–50.CrossRefPubMed
39.
go back to reference Desiere F, Deutsch EW, King NL, Nesvizhskii AI, Mallick P, Eng J, et al. The PeptideAtlas project. Nucleic Acids Res. 2006;34(Database issue):D655–8.CrossRefPubMed Desiere F, Deutsch EW, King NL, Nesvizhskii AI, Mallick P, Eng J, et al. The PeptideAtlas project. Nucleic Acids Res. 2006;34(Database issue):D655–8.CrossRefPubMed
40.
go back to reference Muthusamy B, Hanumanthu G, Suresh S, Rekha B, Srinivas D, Karthick L, et al. Plasma Proteome Database as a resource for proteomics research. Proteomics. 2005;5(13):3531–6.CrossRefPubMed Muthusamy B, Hanumanthu G, Suresh S, Rekha B, Srinivas D, Karthick L, et al. Plasma Proteome Database as a resource for proteomics research. Proteomics. 2005;5(13):3531–6.CrossRefPubMed
41.
go back to reference Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta. 2010;1803(1):55–71.CrossRefPubMedPubMedCentral Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta. 2010;1803(1):55–71.CrossRefPubMedPubMedCentral
44.
go back to reference Kim YS, Kim SH, Kang JG, Ko JH. Expression level and glycan dynamics determine the net effects of TIMP-1 on cancer progression. BMB Rep. 2012;45(11):623–8.CrossRefPubMedPubMedCentral Kim YS, Kim SH, Kang JG, Ko JH. Expression level and glycan dynamics determine the net effects of TIMP-1 on cancer progression. BMB Rep. 2012;45(11):623–8.CrossRefPubMedPubMedCentral
45.
go back to reference Bjerkeli V, Halvorsen B, Damås JK, Nordøy I, Yndestad A, Aukrust P, et al. Expression of matrix metalloproteinases in patients with Wegener’s granulomatosis. Ann Rheum Dis. 2004;63(12):1659–63.CrossRefPubMedPubMedCentral Bjerkeli V, Halvorsen B, Damås JK, Nordøy I, Yndestad A, Aukrust P, et al. Expression of matrix metalloproteinases in patients with Wegener’s granulomatosis. Ann Rheum Dis. 2004;63(12):1659–63.CrossRefPubMedPubMedCentral
46.
go back to reference Kochetov GA, Solovjeva ON. Structure and functioning mechanism of transketolase. Biochim Biophys Acta. 2014;1844(9):1608–18.CrossRefPubMed Kochetov GA, Solovjeva ON. Structure and functioning mechanism of transketolase. Biochim Biophys Acta. 2014;1844(9):1608–18.CrossRefPubMed
47.
go back to reference Mitschke L, Parthier C, Schröder-Tittmann K, Coy J, Lüdtke S, Tittmann K. The crystal structure of human transketolase and new insights into its mode of action. J Biol Chem. 2010;285(41):31559–70.CrossRefPubMedPubMedCentral Mitschke L, Parthier C, Schröder-Tittmann K, Coy J, Lüdtke S, Tittmann K. The crystal structure of human transketolase and new insights into its mode of action. J Biol Chem. 2010;285(41):31559–70.CrossRefPubMedPubMedCentral
49.
go back to reference Sax CM, Salamon C, Kays WT, Guo J, Yu FX, Cuthbertson RA, et al. Transketolase is a major protein in the mouse cornea. J Biol Chem. 1996;271(52):33568–74.CrossRefPubMed Sax CM, Salamon C, Kays WT, Guo J, Yu FX, Cuthbertson RA, et al. Transketolase is a major protein in the mouse cornea. J Biol Chem. 1996;271(52):33568–74.CrossRefPubMed
50.
go back to reference Greenlee-Wacker MC, Galvan MD, Bohlson SS. CD93: recent advances and implications in disease. Curr Drug Targets. 2012;13(3):411–20.CrossRefPubMed Greenlee-Wacker MC, Galvan MD, Bohlson SS. CD93: recent advances and implications in disease. Curr Drug Targets. 2012;13(3):411–20.CrossRefPubMed
51.
go back to reference Greenlee MC, Sullivan SA, Bohlson SS. Detection and characterization of soluble CD93 released during inflammation. Inflamm Res. 2009;58(12):909–19.CrossRefPubMed Greenlee MC, Sullivan SA, Bohlson SS. Detection and characterization of soluble CD93 released during inflammation. Inflamm Res. 2009;58(12):909–19.CrossRefPubMed
52.
go back to reference Mälarstig A, Silveira A, Wågsäter D, Öhrvik J, Bäcklund A, Samnegård A, et al. Plasma CD93 concentration is a potential novel biomarker for coronary artery disease. J Intern Med. 2011;270(3):229–36.CrossRefPubMed Mälarstig A, Silveira A, Wågsäter D, Öhrvik J, Bäcklund A, Samnegård A, et al. Plasma CD93 concentration is a potential novel biomarker for coronary artery disease. J Intern Med. 2011;270(3):229–36.CrossRefPubMed
53.
go back to reference Youn JC, Yu HT, Jeon JW, Lee HS, Jang Y, Park YW, et al. Soluble CD93 levels in patients with acute myocardial infarction and its implication on clinical outcome. PLoS One. 2014;9(5), e96538.CrossRefPubMedPubMedCentral Youn JC, Yu HT, Jeon JW, Lee HS, Jang Y, Park YW, et al. Soluble CD93 levels in patients with acute myocardial infarction and its implication on clinical outcome. PLoS One. 2014;9(5), e96538.CrossRefPubMedPubMedCentral
54.
go back to reference Fonseca MI, Carpenter PM, Park M, Palmarini G, Nelson EL, Tenner AJ. C1qR(P), a myeloid cell receptor in blood, is predominantly expressed on endothelial cells in human tissue. J Leukoc Biol. 2001;70(5):793–800.PubMed Fonseca MI, Carpenter PM, Park M, Palmarini G, Nelson EL, Tenner AJ. C1qR(P), a myeloid cell receptor in blood, is predominantly expressed on endothelial cells in human tissue. J Leukoc Biol. 2001;70(5):793–800.PubMed
55.
go back to reference Pepper RJ, Hamour S, Chavele KM, Todd SK, Rasmussen N, Flint S, et al. Leukocyte and serum S100A8/S100A9 expression reflects disease activity in ANCA-associated vasculitis and glomerulonephritis. Kidney Int. 2013;83(6):1150–8.CrossRefPubMedPubMedCentral Pepper RJ, Hamour S, Chavele KM, Todd SK, Rasmussen N, Flint S, et al. Leukocyte and serum S100A8/S100A9 expression reflects disease activity in ANCA-associated vasculitis and glomerulonephritis. Kidney Int. 2013;83(6):1150–8.CrossRefPubMedPubMedCentral
56.
go back to reference Pruenster M, Vogl T, Roth J, Sperandio M. S100A8/A9: from basic science to clinical application. Pharmacol Ther. 2016;167:120–31.CrossRefPubMed Pruenster M, Vogl T, Roth J, Sperandio M. S100A8/A9: from basic science to clinical application. Pharmacol Ther. 2016;167:120–31.CrossRefPubMed
58.
go back to reference Kaarteenaho-Wiik R, Mertaniemi P, Sajanti E, Soini Y, Pääkkö P. Tenascin is increased in epithelial lining fluid in fibrotic lung disorders. Lung. 1998;176(6):371–80.CrossRefPubMed Kaarteenaho-Wiik R, Mertaniemi P, Sajanti E, Soini Y, Pääkkö P. Tenascin is increased in epithelial lining fluid in fibrotic lung disorders. Lung. 1998;176(6):371–80.CrossRefPubMed
59.
go back to reference Kaarteenaho-Wiik R, Lakari E, Soini Y, Pöllänen R, Kinnula VL, Pääkkö P. Tenascin expression and distribution in pleural inflammatory and fibrotic diseases. J Histochem Cytochem. 2000;48(9):1257–68.CrossRefPubMed Kaarteenaho-Wiik R, Lakari E, Soini Y, Pöllänen R, Kinnula VL, Pääkkö P. Tenascin expression and distribution in pleural inflammatory and fibrotic diseases. J Histochem Cytochem. 2000;48(9):1257–68.CrossRefPubMed
Metadata
Title
Targeted proteomics reveals promising biomarkers of disease activity and organ involvement in antineutrophil cytoplasmic antibody-associated vasculitis
Authors
Jun Ishizaki
Ayako Takemori
Koichiro Suemori
Takuya Matsumoto
Yoko Akita
Ken-ei Sada
Yukio Yuzawa
Koichi Amano
Yoshinari Takasaki
Masayoshi Harigai
Yoshihiro Arimura
Hirofumi Makino
Masaki Yasukawa
Nobuaki Takemori
Hitoshi Hasegawa
for the Research Committee of Intractable Vasculitis Syndrome and the Research Committee of Intractable Renal Disease of the Ministry of Health, Labour and Welfare of Japan
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2017
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-017-1429-3

Other articles of this Issue 1/2017

Arthritis Research & Therapy 1/2017 Go to the issue