Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2015

Open Access 01-12-2015 | Research article

Inhibition of angiogenesis by platelets in systemic sclerosis patients

Authors: Daniela Hirigoyen, Paula I. Burgos, Veronica Mezzano, Josefina Duran, Magaly Barrientos, Claudia G. Saez, Olga Panes, Diego Mezzano, Mirentxu Iruretagoyena

Published in: Arthritis Research & Therapy | Issue 1/2015

Login to get access

Abstract

Introduction

Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by microvascular damage, inflammation, and fibrosis. It has become increasingly evident that platelets, beyond regulating hemostasis, are important in inflammation and innate immunity. Platelets may be an important source of proinflammatory and profibrotic cytokines in the vascular microenvironment. In this study, we sought to assess the contribution of platelet-derived factors in patients with SSc to the angiogenesis of human dermal microvascular endothelial cells (DMVECs) in a tubule formation assay and to characterize the secretion of profibrotic and proinflammatory cytokines in these platelets.

Methods

We analyzed platelets obtained from 30 patients with SSc and 12 healthy control subjects. Angiogenesis was evaluated in vitro with a DMVEC tubule formation assay on Matrigel and platelet-derived angiogenic factors such as vascular endothelial growth factor (VEGF), 165b isoform (VEGF165b), and cytokine secretion was evaluated. Platelet serotonin content was also determined.

Results

When DMVECs were incubated with SSc platelet releasates, tubule formation was significantly inhibited (p < 0.01, t test), and higher expression of endothelin-1 in these cells was observed compared with control subjects (p < 0.05, Mann–Whitney U test). In SSc platelet releasates, VEGF165b was significantly higher (p < 0.05, t test), and the VEGF165b/VEGF ratio was increased compared with that of control subjects. Higher secretion of transforming growth factor β (p < 0.01, t test) and CD40L (p < 0.01, t test) was observed compared with control subjects. Also, intraplatelet serotonin levels were lower in platelets obtained from patients with diffuse SSc compared with patients with limited SSc and control subjects (p < 0.05, t test).

Conclusions

Our findings suggest that antiangiogenic factors such as VEGF165b, together with proinflammatory and profibrotic factors secreted by platelets, can contribute to the progression of peripheral microvascular damage, defective vascular repair, and fibrosis in patients with SSc.
Literature
1.
go back to reference Chifflot H, Fautrel B, Sordet C, Chatelus E, Sibilia J. Incidence and prevalence of systemic sclerosis: a systematic literature review. Semin Arthritis Rheum. 2008;37:223–35.CrossRefPubMed Chifflot H, Fautrel B, Sordet C, Chatelus E, Sibilia J. Incidence and prevalence of systemic sclerosis: a systematic literature review. Semin Arthritis Rheum. 2008;37:223–35.CrossRefPubMed
2.
go back to reference Coral-Alvarado P, Pardo AL, Castaño-Rodriguez N, Rojas-Villarraga A, Anaya JM. Systemic sclerosis: a world wide global analysis. Clin Rheumatol. 2009;28:757–65.CrossRefPubMed Coral-Alvarado P, Pardo AL, Castaño-Rodriguez N, Rojas-Villarraga A, Anaya JM. Systemic sclerosis: a world wide global analysis. Clin Rheumatol. 2009;28:757–65.CrossRefPubMed
3.
go back to reference Denton CP, Black CM. Scleroderma—clinical and pathological advances. Best Pract Res Clin Rheumatol. 2004;18:271–90.CrossRefPubMed Denton CP, Black CM. Scleroderma—clinical and pathological advances. Best Pract Res Clin Rheumatol. 2004;18:271–90.CrossRefPubMed
4.
go back to reference Abraham DJ, Varga J. Scleroderma: from cell and molecular mechanisms to disease models. Trends Immunol. 2005;26:587–95.CrossRefPubMed Abraham DJ, Varga J. Scleroderma: from cell and molecular mechanisms to disease models. Trends Immunol. 2005;26:587–95.CrossRefPubMed
5.
go back to reference Gabrielli A, Svegliati S, Moroncini G, Avvedimento EV. Pathogenic autoantibodies in systemic sclerosis. Curr Opin Immunol. 2007;19:640–5.CrossRefPubMed Gabrielli A, Svegliati S, Moroncini G, Avvedimento EV. Pathogenic autoantibodies in systemic sclerosis. Curr Opin Immunol. 2007;19:640–5.CrossRefPubMed
6.
go back to reference Hunzelmann N, Brinckmann J. What are the new milestones in the pathogenesis of systemic sclerosis? Ann Rheum Dis. 2010;69 Suppl 1:i52–6.CrossRefPubMed Hunzelmann N, Brinckmann J. What are the new milestones in the pathogenesis of systemic sclerosis? Ann Rheum Dis. 2010;69 Suppl 1:i52–6.CrossRefPubMed
8.
go back to reference Kahaleh MB, Osborn I, Leroy EC. Elevated levels of circulating platelet aggregates and beta-thromboglobulin in scleroderma. Ann Intern Med. 1982;96:610–3.CrossRefPubMed Kahaleh MB, Osborn I, Leroy EC. Elevated levels of circulating platelet aggregates and beta-thromboglobulin in scleroderma. Ann Intern Med. 1982;96:610–3.CrossRefPubMed
9.
go back to reference Postlethwaite AE, Chiang TM. Platelet contributions to the pathogenesis of systemic sclerosis. Curr Opin Rheumatol. 2007;19:574–9.CrossRefPubMed Postlethwaite AE, Chiang TM. Platelet contributions to the pathogenesis of systemic sclerosis. Curr Opin Rheumatol. 2007;19:574–9.CrossRefPubMed
10.
go back to reference Silveri F, De Angelis R, Poggi A, Muti S, Bonapace G, Argentati F, et al. Relative roles of endothelial cell damage and platelet activation in primary Raynaud’s phenomenon (RP) and RP secondary to systemic sclerosis. Scand J Rheumatol. 2001;30:290–6.CrossRefPubMed Silveri F, De Angelis R, Poggi A, Muti S, Bonapace G, Argentati F, et al. Relative roles of endothelial cell damage and platelet activation in primary Raynaud’s phenomenon (RP) and RP secondary to systemic sclerosis. Scand J Rheumatol. 2001;30:290–6.CrossRefPubMed
11.
go back to reference Lonzetti LS, Joyal F, Raynauld JP, Roussin A, Goulet JR, Rich E, et al. Updating the American College of Rheumatology preliminary classification criteria for systemic sclerosis: addition of severe nailfold capillaroscopy abnormalities markedly increases the sensitivity for limited scleroderma. Arthritis Rheum. 2001;44:735–6.CrossRefPubMed Lonzetti LS, Joyal F, Raynauld JP, Roussin A, Goulet JR, Rich E, et al. Updating the American College of Rheumatology preliminary classification criteria for systemic sclerosis: addition of severe nailfold capillaroscopy abnormalities markedly increases the sensitivity for limited scleroderma. Arthritis Rheum. 2001;44:735–6.CrossRefPubMed
12.
go back to reference LeRoy EC, Medsger Jr TA. Criteria for the classification of early systemic sclerosis. J Rheumatol. 2001;28:1573–6.PubMed LeRoy EC, Medsger Jr TA. Criteria for the classification of early systemic sclerosis. J Rheumatol. 2001;28:1573–6.PubMed
13.
go back to reference Panes O, Matus V, Sáez CG, Quiroga T, Pereira J, Mezzano D. Human platelets synthesize and express functional tissue factor. Blood. 2007;109:5242–50.CrossRefPubMed Panes O, Matus V, Sáez CG, Quiroga T, Pereira J, Mezzano D. Human platelets synthesize and express functional tissue factor. Blood. 2007;109:5242–50.CrossRefPubMed
14.
go back to reference Quiroga T, Goycoolea M, Belmont S, Panes O, Aranda E, Zúñiga P, et al. Quantitative impact of using different criteria for the laboratory diagnosis of type 1 von Willebrand disease. J Thromb Haemost. 2014;12:1238–43.CrossRefPubMed Quiroga T, Goycoolea M, Belmont S, Panes O, Aranda E, Zúñiga P, et al. Quantitative impact of using different criteria for the laboratory diagnosis of type 1 von Willebrand disease. J Thromb Haemost. 2014;12:1238–43.CrossRefPubMed
15.
go back to reference Kumar AM, Kumar M, Deepika K, Fernandez JB, Eisdorfer C. A modified HPLC technique for simultaneous measurement of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in cerebrospinal fluid, platelet and plasma. Life Sci. 1990;47:1751–9.CrossRefPubMed Kumar AM, Kumar M, Deepika K, Fernandez JB, Eisdorfer C. A modified HPLC technique for simultaneous measurement of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in cerebrospinal fluid, platelet and plasma. Life Sci. 1990;47:1751–9.CrossRefPubMed
17.
go back to reference Distler O, Del Rosso A, Giacomelli R, Cipriani P, Conforti ML, Guiducci S, et al. Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. Arthritis Res. 2002;4:R11.PubMedCentralCrossRefPubMed Distler O, Del Rosso A, Giacomelli R, Cipriani P, Conforti ML, Guiducci S, et al. Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. Arthritis Res. 2002;4:R11.PubMedCentralCrossRefPubMed
18.
go back to reference Ioannou M, Pyrpasopoulou A, Simos G, Paraskeva E, Nikolaidou C, Venizelos I, et al. Upregulation of VEGF expression is associated with accumulation of HIF-1α in the skin of naive scleroderma patients. Mod Rheumatol. 2013;23:1245–8.CrossRefPubMed Ioannou M, Pyrpasopoulou A, Simos G, Paraskeva E, Nikolaidou C, Venizelos I, et al. Upregulation of VEGF expression is associated with accumulation of HIF-1α in the skin of naive scleroderma patients. Mod Rheumatol. 2013;23:1245–8.CrossRefPubMed
19.
go back to reference Bates DO, Mavrou A, Qiu Y, Carter JG, Hamdollah-Zadeh M, Barratt S, et al. Detection of VEGF-Axxxb isoforms in human tissues. PLoS One. 2013;8, e68399.PubMedCentralCrossRefPubMed Bates DO, Mavrou A, Qiu Y, Carter JG, Hamdollah-Zadeh M, Barratt S, et al. Detection of VEGF-Axxxb isoforms in human tissues. PLoS One. 2013;8, e68399.PubMedCentralCrossRefPubMed
20.
go back to reference Manetti M, Guiducci S, Romano E, Ceccarelli C, Bellando-Randone S, Conforti ML, et al. Overexpression of VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, leads to insufficient angiogenesis in patients with systemic sclerosis. Circ Res. 2011;109:e14–26.CrossRefPubMed Manetti M, Guiducci S, Romano E, Ceccarelli C, Bellando-Randone S, Conforti ML, et al. Overexpression of VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, leads to insufficient angiogenesis in patients with systemic sclerosis. Circ Res. 2011;109:e14–26.CrossRefPubMed
21.
go back to reference Dees C, Akhmetshina A, Zerr P, Reich N, Palumbo K, Horn A, et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J Exp Med. 2011;208:961–72.PubMedCentralCrossRefPubMed Dees C, Akhmetshina A, Zerr P, Reich N, Palumbo K, Horn A, et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J Exp Med. 2011;208:961–72.PubMedCentralCrossRefPubMed
22.
go back to reference Prescott RJ, Freemont AJ, Jones CJ, Hoyland J, Fielding P. Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol. 1992;166:255–63.CrossRefPubMed Prescott RJ, Freemont AJ, Jones CJ, Hoyland J, Fielding P. Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol. 1992;166:255–63.CrossRefPubMed
23.
go back to reference Sgonc R, Gruschwitz MS, Boeck G, Sepp N, Gruber J, Wick G. Endothelial cell apoptosis in systemic sclerosis is induced by antibody-dependent cell-mediated cytotoxicity via CD95. Arthritis Rheum. 2000;43:2550–62.CrossRefPubMed Sgonc R, Gruschwitz MS, Boeck G, Sepp N, Gruber J, Wick G. Endothelial cell apoptosis in systemic sclerosis is induced by antibody-dependent cell-mediated cytotoxicity via CD95. Arthritis Rheum. 2000;43:2550–62.CrossRefPubMed
24.
go back to reference Kahaleh B. Vascular disease in scleroderma: mechanisms of vascular injury. Rheum Dis Clin North Am. 2008;34:57–71.CrossRefPubMed Kahaleh B. Vascular disease in scleroderma: mechanisms of vascular injury. Rheum Dis Clin North Am. 2008;34:57–71.CrossRefPubMed
26.
go back to reference Shi-Wen X, Chen Y, Denton CP, Eastwood M, Renzoni EA, Bou-Gharios G, et al. Endothelin-1 promotes myofibroblast induction through the ETA receptor via a rac/phosphoinositide 3-kinase/Akt-dependent pathway and is essential for the enhanced contractile phenotype of fibrotic fibroblasts. Mol Biol Cell. 2004;15:2707–19.PubMedCentralCrossRefPubMed Shi-Wen X, Chen Y, Denton CP, Eastwood M, Renzoni EA, Bou-Gharios G, et al. Endothelin-1 promotes myofibroblast induction through the ETA receptor via a rac/phosphoinositide 3-kinase/Akt-dependent pathway and is essential for the enhanced contractile phenotype of fibrotic fibroblasts. Mol Biol Cell. 2004;15:2707–19.PubMedCentralCrossRefPubMed
27.
go back to reference Corallo C, Franci B, Lucani B, Montella A, Chirico C, Gonnelli S, et al. From microvasculature to fibroblasts: contribution of anti-endothelial cell antibodies in systemic sclerosis. Int J Immunopathol Pharmacol. 2015;28:93–103.CrossRefPubMed Corallo C, Franci B, Lucani B, Montella A, Chirico C, Gonnelli S, et al. From microvasculature to fibroblasts: contribution of anti-endothelial cell antibodies in systemic sclerosis. Int J Immunopathol Pharmacol. 2015;28:93–103.CrossRefPubMed
28.
go back to reference Papaioannou AI, Zakynthinos E, Kostikas K, Kiropoulos T, Koutsokera A, Ziogas A, et al. Serum VEGF levels are related to the presence of pulmonary arterial hypertension in systemic sclerosis. BMC Pulm Med. 2009;9:18.PubMedCentralCrossRefPubMed Papaioannou AI, Zakynthinos E, Kostikas K, Kiropoulos T, Koutsokera A, Ziogas A, et al. Serum VEGF levels are related to the presence of pulmonary arterial hypertension in systemic sclerosis. BMC Pulm Med. 2009;9:18.PubMedCentralCrossRefPubMed
29.
go back to reference Manetti M, Guiducci S, Romano E, Bellando-Randone S, Lepri G, Bruni C, et al. Increased plasma levels of the VEGF165b splice variant are associated with the severity of nailfold capillary loss in systemic sclerosis. Ann Rheum Dis. 2013;72:1425–7.CrossRefPubMed Manetti M, Guiducci S, Romano E, Bellando-Randone S, Lepri G, Bruni C, et al. Increased plasma levels of the VEGF165b splice variant are associated with the severity of nailfold capillary loss in systemic sclerosis. Ann Rheum Dis. 2013;72:1425–7.CrossRefPubMed
31.
go back to reference Mumford AD, Frelinger 3rd AL, Gachet C, Gresele P, Noris P, Harrison P, et al. A review of platelet secretion assays for the diagnosis of inherited platelet secretion disorders. Thromb Haemost. 2015;114:14–25.CrossRefPubMed Mumford AD, Frelinger 3rd AL, Gachet C, Gresele P, Noris P, Harrison P, et al. A review of platelet secretion assays for the diagnosis of inherited platelet secretion disorders. Thromb Haemost. 2015;114:14–25.CrossRefPubMed
32.
go back to reference van Bon L, Affandi AJ, Broen J, Christmann RB, Marijnissen RJ, Stawski L, et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N Engl J Med. 2014;370:433–43.PubMedCentralCrossRefPubMed van Bon L, Affandi AJ, Broen J, Christmann RB, Marijnissen RJ, Stawski L, et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N Engl J Med. 2014;370:433–43.PubMedCentralCrossRefPubMed
33.
go back to reference Chatzigeorgiou A, Lyberi M, Chatzilymperis G, Nezos A, Kamper E. CD40/CD40L signaling and its implication in health and disease. Biofactors. 2009;35:474–83.CrossRefPubMed Chatzigeorgiou A, Lyberi M, Chatzilymperis G, Nezos A, Kamper E. CD40/CD40L signaling and its implication in health and disease. Biofactors. 2009;35:474–83.CrossRefPubMed
34.
go back to reference Henn V, Slupsky JR, Gräfe M, Anagnostopoulos I, Förster R, Müller-Berghaus G, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998;391:591–4.CrossRefPubMed Henn V, Slupsky JR, Gräfe M, Anagnostopoulos I, Förster R, Müller-Berghaus G, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998;391:591–4.CrossRefPubMed
35.
go back to reference Hermann A, Rauch BH, Braun M, Schrör K, Weber AA. Platelet CD40 ligand (CD40L) – subcellular localization, regulation of expression, and inhibition by clopidogrel. Platelets. 2001;12:74–82.CrossRefPubMed Hermann A, Rauch BH, Braun M, Schrör K, Weber AA. Platelet CD40 ligand (CD40L) – subcellular localization, regulation of expression, and inhibition by clopidogrel. Platelets. 2001;12:74–82.CrossRefPubMed
36.
go back to reference Nurden AT, Nurden P, Sanchez M, Andia I, Anitua E. Platelets and wound healing. Front Biosci. 2008;13:3532–48.PubMed Nurden AT, Nurden P, Sanchez M, Andia I, Anitua E. Platelets and wound healing. Front Biosci. 2008;13:3532–48.PubMed
37.
go back to reference Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004;91:4–15.PubMed Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004;91:4–15.PubMed
38.
go back to reference Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB. Transforming growth factor-β in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem. 1983;258:7155–60.PubMed Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB. Transforming growth factor-β in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem. 1983;258:7155–60.PubMed
39.
go back to reference Cicha I, Garlichs CD, Daniel WG, Goppelt-Struebe M. Activated human platelets release connective tissue growth factor. Thromb Haemost. 2004;91:755–60.PubMed Cicha I, Garlichs CD, Daniel WG, Goppelt-Struebe M. Activated human platelets release connective tissue growth factor. Thromb Haemost. 2004;91:755–60.PubMed
40.
go back to reference Kubota S, Kawata K, Yanagita T, Doi H, Kitoh T, Takigawa M. Abundant retention and release of connective tissue growth factor (CTGF/CCN2) by platelets. J Biochem. 2004;136:279–82.CrossRefPubMed Kubota S, Kawata K, Yanagita T, Doi H, Kitoh T, Takigawa M. Abundant retention and release of connective tissue growth factor (CTGF/CCN2) by platelets. J Biochem. 2004;136:279–82.CrossRefPubMed
41.
go back to reference Komura K, Sato S, Hasegawa M, Fujimoto M, Takehara K. Elevated circulating CD40L concentrations in patients with systemic sclerosis. J Rheumatol. 2004;31:514–9.PubMed Komura K, Sato S, Hasegawa M, Fujimoto M, Takehara K. Elevated circulating CD40L concentrations in patients with systemic sclerosis. J Rheumatol. 2004;31:514–9.PubMed
42.
go back to reference Stachów A, Jabłońska S, Skiendzielewska A. Biogenic amines derived from tryptophan in systemic and cutaneous scleroderma. Acta Derm Venereol. 1979;59:1–5.PubMed Stachów A, Jabłońska S, Skiendzielewska A. Biogenic amines derived from tryptophan in systemic and cutaneous scleroderma. Acta Derm Venereol. 1979;59:1–5.PubMed
43.
go back to reference Mezzano D, Aranda E, Rodríguez S, Foradori A, Lira P. Increase in density and accumulation of serotonin by human aging platelets. Am J Hematol. 1984;17:11–21.CrossRefPubMed Mezzano D, Aranda E, Rodríguez S, Foradori A, Lira P. Increase in density and accumulation of serotonin by human aging platelets. Am J Hematol. 1984;17:11–21.CrossRefPubMed
44.
go back to reference Sorrell JM, Caplan AI. Fibroblasts—a diverse population at the center of it all. Int Rev Cell Mol Biol. 2009;276:161–214.CrossRefPubMed Sorrell JM, Caplan AI. Fibroblasts—a diverse population at the center of it all. Int Rev Cell Mol Biol. 2009;276:161–214.CrossRefPubMed
45.
go back to reference Abraham DJ, Eckes B, Rajkumar V, Krieg T. New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma. Curr Rheumatol Rep. 2007;9:136–43.CrossRefPubMed Abraham DJ, Eckes B, Rajkumar V, Krieg T. New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma. Curr Rheumatol Rep. 2007;9:136–43.CrossRefPubMed
46.
go back to reference Liu ZJ, Zhuge Y, Velazquez OC. Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem. 2009;106:984–91.CrossRefPubMed Liu ZJ, Zhuge Y, Velazquez OC. Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem. 2009;106:984–91.CrossRefPubMed
Metadata
Title
Inhibition of angiogenesis by platelets in systemic sclerosis patients
Authors
Daniela Hirigoyen
Paula I. Burgos
Veronica Mezzano
Josefina Duran
Magaly Barrientos
Claudia G. Saez
Olga Panes
Diego Mezzano
Mirentxu Iruretagoyena
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2015
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-015-0848-2

Other articles of this Issue 1/2015

Arthritis Research & Therapy 1/2015 Go to the issue