Skip to main content
Top
Published in: Trials 1/2020

01-12-2020 | Magnetic Resonance Imaging | Methodology

Upfront radical surgery with total mesorectal excision followed by adjuvant FOLFOX chemotherapy for locally advanced rectal cancer (TME-FOLFOX): an open-label, multicenter, phase II randomized controlled trial

Authors: Jii Bum Lee, Han Sang Kim, Inkyung Jung, Sang Joon Shin, Seung Hoon Beom, Jee Suk Chang, Woong Sub Koom, Tae Il Kim, Hyuk Hur, Byung Soh Min, Nam Kyu Kim, Sohee Park, Seung-Yong Jeong, Jeong-Heum Baek, Seon Hahn Kim, Joon Seok Lim, Kang Young Lee, Joong Bae Ahn

Published in: Trials | Issue 1/2020

Login to get access

Abstract

Background

Preoperative chemoradiotherapy (PCRT) followed by surgery and adjuvant chemotherapy is the current standard treatment for stage II/III rectal cancer. However, radiotherapy in the pelvic area is commonly associated with complications such as anastomotic leakage, sexual dysfunction, and fecal incontinence. Recently, the MERCURY study showed that preoperative high-resolution magnetic resonance imaging (MRI) helped to selectively avoid PCRT. It remains unclear whether PCRT is necessary in patients who can achieve a negative circumferential resection margin (CRM) with surgery alone and in patients with cT1–2N1 or cT3N0 without CRM involvement and lateral lymph node metastasis. This study aims to evaluate the efficacy of upfront radical surgery with total mesorectal excision (TME) followed by adjuvant chemotherapy with folinic acid (or leucovorin), fluorouracil, and oxaliplatin (FOLFOX) versus the current standard treatment in patients with surgically resectable, locally advanced rectal cancer.

Methods

This study, named TME-FOLFOX, is a prospective, open-label, multicenter, phase II randomized trial. Patients with locally advanced rectal cancer will be randomized to receive PCRT followed by TME and adjuvant chemotherapy (arm A) or upfront radical surgery with TME followed by adjuvant FOLFOX chemotherapy (arm B). Clinical stage II/III rectal cancer without CRM involvement and lateral lymph node metastasis will be defined using preoperative MRI. The primary endpoint is 3-year disease-free survival (DFS). Secondary endpoints include 5-year DFS, local recurrence rate, systemic recurrence rate, cost-effectiveness, and overall survival. We hypothesized that our experimental group (arm B) will have a 3-year DFS of 75% and a non-inferiority margin of 15%.

Discussion

Identifying whether patients require PCRT is one of the critical issues in locally advanced rectal cancer. This study aims to elucidate whether PCRT may not be required for all patients with stage II/III rectal cancer, especially for the MRI-based intermediate-risk group (with cT1–2N1 or cT3N0) without CRM involvement and lateral lymph node metastasis. If the findings indicate that our proposed treatment, which omits PCRT, is non-inferior to the standard treatment, then patients may avoid unnecessary radiation-related toxicity, have a shorter treatment duration, and save on medical costs.

Trial registration

ClinicalTrials.​gov, NCT02167321. Registered on 19 June 2014.
Literature
1.
go back to reference Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683–91.CrossRef Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683–91.CrossRef
2.
go back to reference Jung KW, Won YJ, Kong HJ, Lee ES. Prediction of cancer incidence and mortality in Korea, 2018. Cancer Res Treat. 2018;50(2):317–23.CrossRef Jung KW, Won YJ, Kong HJ, Lee ES. Prediction of cancer incidence and mortality in Korea, 2018. Cancer Res Treat. 2018;50(2):317–23.CrossRef
3.
go back to reference Glynne-Jones R, Wyrwicz L, Tiret E, Brown G, Rödel C, Cervantes A, et al. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv22–40.CrossRef Glynne-Jones R, Wyrwicz L, Tiret E, Brown G, Rödel C, Cervantes A, et al. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv22–40.CrossRef
4.
go back to reference Rich T, Gunderson LL, Lew R, Galdibini JJ, Cohen AM, Donaldson G. Patterns of recurrence of rectal cancer after potentially curative surgery. Cancer. 1983;52(7):1317–29.CrossRef Rich T, Gunderson LL, Lew R, Galdibini JJ, Cohen AM, Donaldson G. Patterns of recurrence of rectal cancer after potentially curative surgery. Cancer. 1983;52(7):1317–29.CrossRef
5.
go back to reference Heald RJ, Ryall RDH. Recurrence and survival after total mesorectal excision for rectal cancer. Lancet. 1986;327(8496):1479–82.CrossRef Heald RJ, Ryall RDH. Recurrence and survival after total mesorectal excision for rectal cancer. Lancet. 1986;327(8496):1479–82.CrossRef
6.
go back to reference McNamara DA, Parc R. Methods and results of sphincter-preserving surgery for rectal cancer. Cancer Control. 2003;10(3):212–8.CrossRef McNamara DA, Parc R. Methods and results of sphincter-preserving surgery for rectal cancer. Cancer Control. 2003;10(3):212–8.CrossRef
7.
go back to reference Kapiteijn E, Marijnen CAM, Nagtegaal ID, Putter H, Steup WH, Wiggers T, et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med. 2001;345(9):638–46.CrossRef Kapiteijn E, Marijnen CAM, Nagtegaal ID, Putter H, Steup WH, Wiggers T, et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med. 2001;345(9):638–46.CrossRef
8.
go back to reference Ortholan C, Francois E, Thomas O, Benchimol D, Baulieux J, Bosset JF, et al. Role of radiotherapy with surgery for T3 and resectable T4 rectal cancer: evidence from randomized trials. Dis Colon Rectum. 2006;49(3):302–10.CrossRef Ortholan C, Francois E, Thomas O, Benchimol D, Baulieux J, Bosset JF, et al. Role of radiotherapy with surgery for T3 and resectable T4 rectal cancer: evidence from randomized trials. Dis Colon Rectum. 2006;49(3):302–10.CrossRef
9.
go back to reference Sauer R, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351(17):1731–40.CrossRef Sauer R, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351(17):1731–40.CrossRef
10.
go back to reference Martling A, Holm T, Johansson H, Rutqvist LE, Cedermark B. The Stockholm II trial on preoperative radiotherapy in rectal carcinoma: long-term follow-up of a population-based study. Cancer. 2001;92(4):896–902.CrossRef Martling A, Holm T, Johansson H, Rutqvist LE, Cedermark B. The Stockholm II trial on preoperative radiotherapy in rectal carcinoma: long-term follow-up of a population-based study. Cancer. 2001;92(4):896–902.CrossRef
11.
go back to reference Hendren SK, O'Connor BI, Liu M, Asano T, Cohen Z, Swallow CJ, et al. Prevalence of male and female sexual dysfunction is high following surgery for rectal cancer. Ann Surg. 2005;242(2):212–23.CrossRef Hendren SK, O'Connor BI, Liu M, Asano T, Cohen Z, Swallow CJ, et al. Prevalence of male and female sexual dysfunction is high following surgery for rectal cancer. Ann Surg. 2005;242(2):212–23.CrossRef
12.
go back to reference Kim CH, Lee SY, Kim HR, Kim YJ. Nomogram prediction of anastomotic leakage and determination of an effective surgical strategy for reducing anastomotic leakage after laparoscopic rectal cancer surgery. Gastroenterol Res Pract. 2017;2017:4510561.PubMedPubMedCentral Kim CH, Lee SY, Kim HR, Kim YJ. Nomogram prediction of anastomotic leakage and determination of an effective surgical strategy for reducing anastomotic leakage after laparoscopic rectal cancer surgery. Gastroenterol Res Pract. 2017;2017:4510561.PubMedPubMedCentral
13.
go back to reference Loos M, Quentmeier P, Schuster T, Nitsche U, Gertler R, Keerl A, et al. Effect of preoperative radio(chemo)therapy on long-term functional outcome in rectal cancer patients: a systematic review and meta-analysis. Ann Surg Oncol. 2013;20(6):1816–28.CrossRef Loos M, Quentmeier P, Schuster T, Nitsche U, Gertler R, Keerl A, et al. Effect of preoperative radio(chemo)therapy on long-term functional outcome in rectal cancer patients: a systematic review and meta-analysis. Ann Surg Oncol. 2013;20(6):1816–28.CrossRef
14.
go back to reference Wasserberg N. Interval to surgery after neoadjuvant treatment for colorectal cancer. World J Gastroenterol. 2014;20(15):4256–62.CrossRef Wasserberg N. Interval to surgery after neoadjuvant treatment for colorectal cancer. World J Gastroenterol. 2014;20(15):4256–62.CrossRef
15.
go back to reference Andre T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350(23):2343–51.CrossRef Andre T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350(23):2343–51.CrossRef
16.
go back to reference Yothers G, O'Connell MJ, Allegra CJ, Kuebler JP, Colangelo LH, Petrelli NJ, et al. Oxaliplatin as adjuvant therapy for colon cancer: updated results of NSABP C-07 trial, including survival and subset analyses. J Clin Oncol. 2011;29(28):3768–74.CrossRef Yothers G, O'Connell MJ, Allegra CJ, Kuebler JP, Colangelo LH, Petrelli NJ, et al. Oxaliplatin as adjuvant therapy for colon cancer: updated results of NSABP C-07 trial, including survival and subset analyses. J Clin Oncol. 2011;29(28):3768–74.CrossRef
17.
go back to reference Hong YS, Nam BH, Kim KP, Kim JE, Park SJ, Park YS, et al. Oxaliplatin, fluorouracil, and leucovorin versus fluorouracil and leucovorin as adjuvant chemotherapy for locally advanced rectal cancer after preoperative chemoradiotherapy (ADORE): an open-label, multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2014;15(11):1245–53.CrossRef Hong YS, Nam BH, Kim KP, Kim JE, Park SJ, Park YS, et al. Oxaliplatin, fluorouracil, and leucovorin versus fluorouracil and leucovorin as adjuvant chemotherapy for locally advanced rectal cancer after preoperative chemoradiotherapy (ADORE): an open-label, multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2014;15(11):1245–53.CrossRef
18.
go back to reference Rodel C, Graeven U, Fietkau R, Hohenberger W, Hothorn T, Arnold D, et al. Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2015;16(8):979–89.CrossRef Rodel C, Graeven U, Fietkau R, Hohenberger W, Hothorn T, Arnold D, et al. Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2015;16(8):979–89.CrossRef
19.
go back to reference Taylor FG, Quirke P, Heald RJ, Moran B, Blomqvist L, Swift I, et al. Preoperative high-resolution magnetic resonance imaging can identify good prognosis stage I, II, and III rectal cancer best managed by surgery alone: a prospective, multicenter European study. Ann Surg. 2011;253(4):711–9.CrossRef Taylor FG, Quirke P, Heald RJ, Moran B, Blomqvist L, Swift I, et al. Preoperative high-resolution magnetic resonance imaging can identify good prognosis stage I, II, and III rectal cancer best managed by surgery alone: a prospective, multicenter European study. Ann Surg. 2011;253(4):711–9.CrossRef
20.
go back to reference Kennedy ED, Simunovic M, Jhaveri K, Kirsch R, Brierley J, Drolet S, et al. Safety and feasibility of using magnetic resonance imaging criteria to identify patients with “good prognosis” rectal cancer eligible for primary surgery: the phase 2 nonrandomized QuickSilver clinical trial. JAMA Oncol. 2019. https://doi.org/10.1001/jamaoncol.2019.0186. Kennedy ED, Simunovic M, Jhaveri K, Kirsch R, Brierley J, Drolet S, et al. Safety and feasibility of using magnetic resonance imaging criteria to identify patients with “good prognosis” rectal cancer eligible for primary surgery: the phase 2 nonrandomized QuickSilver clinical trial. JAMA Oncol. 2019. https://​doi.​org/​10.​1001/​jamaoncol.​2019.​0186.
21.
go back to reference Kim JH. Controversial issues in radiotherapy for rectal cancer: a systematic review. Radiat Oncol J. 2017;35(4):295–305.CrossRef Kim JH. Controversial issues in radiotherapy for rectal cancer: a systematic review. Radiat Oncol J. 2017;35(4):295–305.CrossRef
22.
go back to reference Babcock BD, Aljehani MA, Jabo B, Choi AH, Morgan JW, Selleck MJ, et al. High-risk stage II colon cancer: not all risks are created equal. Ann Surg Oncol. 2018;25(7):1980–5.CrossRef Babcock BD, Aljehani MA, Jabo B, Choi AH, Morgan JW, Selleck MJ, et al. High-risk stage II colon cancer: not all risks are created equal. Ann Surg Oncol. 2018;25(7):1980–5.CrossRef
23.
go back to reference Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, et al. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med. 2006;355(11):1114–23.CrossRef Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, et al. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med. 2006;355(11):1114–23.CrossRef
24.
go back to reference Lacy AM, García-Valdecasas JC, Delgado S, Castells A, Taurá P, Piqué JM, et al. Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. Lancet. 2002;359(9325):2224–9.CrossRef Lacy AM, García-Valdecasas JC, Delgado S, Castells A, Taurá P, Piqué JM, et al. Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. Lancet. 2002;359(9325):2224–9.CrossRef
25.
go back to reference Tanaka S, Kinjo Y, Kataoka Y, Yoshimura K, Teramukai S. Statistical issues and recommendations for noninferiority trials in oncology: a systematic review. Clin Cancer Res. 2012;18(7):1837–47.CrossRef Tanaka S, Kinjo Y, Kataoka Y, Yoshimura K, Teramukai S. Statistical issues and recommendations for noninferiority trials in oncology: a systematic review. Clin Cancer Res. 2012;18(7):1837–47.CrossRef
26.
go back to reference Kreis ME, Ruppert R, Ptok H, Strassburg J, Brosi P, Lewin A, et al. Use of preoperative magnetic resonance imaging to select patients with rectal cancer for neoadjuvant chemoradiation—interim analysis of the German OCUM trial (NCT01325649). J Gastrointest Surg. 2016;20(1):25–33.CrossRef Kreis ME, Ruppert R, Ptok H, Strassburg J, Brosi P, Lewin A, et al. Use of preoperative magnetic resonance imaging to select patients with rectal cancer for neoadjuvant chemoradiation—interim analysis of the German OCUM trial (NCT01325649). J Gastrointest Surg. 2016;20(1):25–33.CrossRef
Metadata
Title
Upfront radical surgery with total mesorectal excision followed by adjuvant FOLFOX chemotherapy for locally advanced rectal cancer (TME-FOLFOX): an open-label, multicenter, phase II randomized controlled trial
Authors
Jii Bum Lee
Han Sang Kim
Inkyung Jung
Sang Joon Shin
Seung Hoon Beom
Jee Suk Chang
Woong Sub Koom
Tae Il Kim
Hyuk Hur
Byung Soh Min
Nam Kyu Kim
Sohee Park
Seung-Yong Jeong
Jeong-Heum Baek
Seon Hahn Kim
Joon Seok Lim
Kang Young Lee
Joong Bae Ahn
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Trials / Issue 1/2020
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-020-04266-6

Other articles of this Issue 1/2020

Trials 1/2020 Go to the issue