Skip to main content
Top
Published in: Trials 1/2019

Open Access 01-12-2019 | Study protocol

Critical inspiratory pressure – a new methodology for evaluating and training the inspiratory musculature for recreational cyclists: study protocol for a randomized controlled trial

Authors: Patricia Rehder-Santos, Vinicius Minatel, Juliana Cristina Milan-Mattos, Étore De Favari Signini, Raphael Martins de Abreu, Carla Cristina Dato, Aparecida Maria Catai

Published in: Trials | Issue 1/2019

Login to get access

Abstract

Background

Inspiratory muscle training (IMT) has brought great benefits in terms of improving physical performance in healthy individuals. However, there is no consensus regarding the best training load, as in most cases the maximal inspiratory pressure (MIP) is used, mainly the intensity of 60% of MIP. Therefore, prescribing an IMT protocol that takes into account inspiratory muscle strength and endurance may bring additional benefits to the commonly used protocols, since respiratory muscles differ from other muscles because of their greater muscular resistance. Thus, IMT using critical inspiratory pressure (PThC) can be an alternative, as the calculation of PThC considers these characteristics. Therefore, the aim of this study is to propose a new IMT protocol to determine the best training load for recreational cyclists.

Methods

Thirty recreational cyclists (between 20 and 40 years old) will be randomized into three groups: sham (SG), PThC (CPG) and 60% of MIP, according to age and aerobic functional capacity. All participants will undergo the following evaluations: pulmonary function test (PFT), respiratory muscle strength test (RMS), cardiopulmonary exercise test (CPET), incremental inspiratory muscle endurance test (iIME) (maximal sustained respiratory pressure for 1 min (PThMAX)) and constant load test (CLT) (95%, 100% and 105% of PThMÁX) using a linear load inspiratory resistor (PowerBreathe K5). The PThC will be calculated from the inspiratory muscle endurance time (TLIM) and inspiratory loads of each CLT. The IMT will last 11 weeks (3 times/week and 55 min/session). The session will consist of 5-min warm-up (50% of the training load) and three sets of 15-min breaths (100% of the training load), with a 1-min interval between them. RMS, iIME, CLT and CPET will be performed beforehand, at week 5 and 9 (to adjust the training load) and after training. PFT will be performed before and after training. The data will be analyzed using specific statistical tests (parametric or non-parametric) according to the data distribution and their respective variances. A p value <0.05 will be considered statistically significant.

Discussions

It is expected that the results of this study will enable the training performed with PThC to be used by health professionals as a new tool to evaluate and prescribe IMT.

Trial registration

ClinicalTrials.gov, NCT02984189. Registered on 6 December 2016.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cahalin LP, Arena R, Guazzi M, Myers J, Cipriano G, Chiappa G, et al. Inspiratory muscle training in heart disease and heart failure: a review of the literature with a focus on method of training and outcomes. Expert Rev Cardiovasc Ther. 2013;11(2):161–77.CrossRefPubMed Cahalin LP, Arena R, Guazzi M, Myers J, Cipriano G, Chiappa G, et al. Inspiratory muscle training in heart disease and heart failure: a review of the literature with a focus on method of training and outcomes. Expert Rev Cardiovasc Ther. 2013;11(2):161–77.CrossRefPubMed
2.
go back to reference Cahalin LP, Arena RA. Breathing exercises and inspiratory muscle training in heart failure. Heart Fail Clin. 2015;11(1):149–72.CrossRefPubMed Cahalin LP, Arena RA. Breathing exercises and inspiratory muscle training in heart failure. Heart Fail Clin. 2015;11(1):149–72.CrossRefPubMed
3.
go back to reference HajGhanbari B, Yamabayashi C, Buna TR, Coelho JD, Freedman KD, Morton TA, et al. Effects of respiratory muscle training on performance in athletes: a systematic review with meta-analyses. J Strength Cond Res. 2013;27(6):1643–63.CrossRefPubMed HajGhanbari B, Yamabayashi C, Buna TR, Coelho JD, Freedman KD, Morton TA, et al. Effects of respiratory muscle training on performance in athletes: a systematic review with meta-analyses. J Strength Cond Res. 2013;27(6):1643–63.CrossRefPubMed
4.
go back to reference Edwards AM, Cooke CB. Oxygen uptake kinetics and maximal aerobic power are unaffected by inspiratory muscle training in healthy subjects where time to exhaustion is extended. Eur J Appl Physiol. 2004;93(1–2):139–44.CrossRefPubMed Edwards AM, Cooke CB. Oxygen uptake kinetics and maximal aerobic power are unaffected by inspiratory muscle training in healthy subjects where time to exhaustion is extended. Eur J Appl Physiol. 2004;93(1–2):139–44.CrossRefPubMed
5.
go back to reference Gething AD, Williams M, Davies B. Inspiratory resistive loading improves cycling capacity: a placebo controlled trial. Br J Sports Med. 2004;38(6):730–6.CrossRefPubMed Gething AD, Williams M, Davies B. Inspiratory resistive loading improves cycling capacity: a placebo controlled trial. Br J Sports Med. 2004;38(6):730–6.CrossRefPubMed
6.
go back to reference Sheel AW. Respiratory muscle training in healthy individuals: physiological rationale and implications for exercise performance. Sports Med. 2002;32(9):567–81.CrossRefPubMed Sheel AW. Respiratory muscle training in healthy individuals: physiological rationale and implications for exercise performance. Sports Med. 2002;32(9):567–81.CrossRefPubMed
7.
go back to reference Fairbarn M, Coutts K, Pardy R, McKenzie D. Improved respiratory muscle endurance of highly trained cyclists and the effects on maximal Exercise performance. Int J Sports Med. 1991;12(01):66–70.CrossRefPubMed Fairbarn M, Coutts K, Pardy R, McKenzie D. Improved respiratory muscle endurance of highly trained cyclists and the effects on maximal Exercise performance. Int J Sports Med. 1991;12(01):66–70.CrossRefPubMed
8.
go back to reference Holm P, Sattler A, Fregosi RF. Endurance training of respiratory muscles improves cycling performance in fit young cyclists. BMC Physiol. 2004;4:9.CrossRefPubMed Holm P, Sattler A, Fregosi RF. Endurance training of respiratory muscles improves cycling performance in fit young cyclists. BMC Physiol. 2004;4:9.CrossRefPubMed
9.
go back to reference Jakovljevic DG, McConnell AK. Influence of different breathing frequencies on the severity of inspiratory muscle fatigue induced by high-intensity front crawl swimming. J Strength Cond Res. 2009;23(4):1169–74.CrossRefPubMed Jakovljevic DG, McConnell AK. Influence of different breathing frequencies on the severity of inspiratory muscle fatigue induced by high-intensity front crawl swimming. J Strength Cond Res. 2009;23(4):1169–74.CrossRefPubMed
10.
go back to reference Johnson MA, Sharpe GR, Brown PI. Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power. Eur J Appl Physiol. 2007;101(6):761–70.CrossRefPubMed Johnson MA, Sharpe GR, Brown PI. Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power. Eur J Appl Physiol. 2007;101(6):761–70.CrossRefPubMed
11.
go back to reference Kilding AE, Brown S, McConnell AK. Inspiratory muscle training improves 100 and 200 m swimming performance. Eur J Appl Physiol. 2010;108(3):505–11.CrossRefPubMed Kilding AE, Brown S, McConnell AK. Inspiratory muscle training improves 100 and 200 m swimming performance. Eur J Appl Physiol. 2010;108(3):505–11.CrossRefPubMed
12.
go back to reference Mickleborough TD, Nichols T, Lindley MR, Chatham K, Ionescu AA. Inspiratory flow resistive loading improves respiratory muscle function and endurance capacity in recreational runners: inspiratory muscle training and running. Scand J Med Sci Sports. 2009;20(3):458–68.CrossRefPubMed Mickleborough TD, Nichols T, Lindley MR, Chatham K, Ionescu AA. Inspiratory flow resistive loading improves respiratory muscle function and endurance capacity in recreational runners: inspiratory muscle training and running. Scand J Med Sci Sports. 2009;20(3):458–68.CrossRefPubMed
13.
go back to reference Sonetti DA, Wetter TJ, Pegelow DF, Dempsey JA. Effects of respiratory muscle training versus placebo on endurance exercise performance. Respir Physiol. 2001;127(2–3):185–99.CrossRefPubMed Sonetti DA, Wetter TJ, Pegelow DF, Dempsey JA. Effects of respiratory muscle training versus placebo on endurance exercise performance. Respir Physiol. 2001;127(2–3):185–99.CrossRefPubMed
14.
go back to reference Wells GD, Plyley M, Thomas S, Goodman L, Duffin J. Effects of concurrent inspiratory and expiratory muscle training on respiratory and exercise performance in competitive swimmers. Eur J Appl Physiol. 2005;94(5–6):527–40.CrossRefPubMed Wells GD, Plyley M, Thomas S, Goodman L, Duffin J. Effects of concurrent inspiratory and expiratory muscle training on respiratory and exercise performance in competitive swimmers. Eur J Appl Physiol. 2005;94(5–6):527–40.CrossRefPubMed
15.
go back to reference Wylegala JA, Pendergast DR, Gosselin LE, Warkander DE, Lundgren CEG. Respiratory muscle training improves swimming endurance in divers. Eur J Appl Physiol. 2007;99(4):393–404.CrossRefPubMed Wylegala JA, Pendergast DR, Gosselin LE, Warkander DE, Lundgren CEG. Respiratory muscle training improves swimming endurance in divers. Eur J Appl Physiol. 2007;99(4):393–404.CrossRefPubMed
16.
go back to reference Sturdy G, Hillman D, Green D, Jenkins S, Cecins N, Eastwood P. Feasibility of high-intensity, interval-based respiratory muscle training in COPD. Chest. 2003;123(1):142–50.CrossRefPubMed Sturdy G, Hillman D, Green D, Jenkins S, Cecins N, Eastwood P. Feasibility of high-intensity, interval-based respiratory muscle training in COPD. Chest. 2003;123(1):142–50.CrossRefPubMed
17.
go back to reference Hill K, Jenkins SC, Philippe DL, Shepherd KL, Hillman DR, Eastwood PR. Comparison of incremental and constant load tests of inspiratory muscle endurance in COPD. Eur Respir J. 2007;30(3):479–86.CrossRefPubMed Hill K, Jenkins SC, Philippe DL, Shepherd KL, Hillman DR, Eastwood PR. Comparison of incremental and constant load tests of inspiratory muscle endurance in COPD. Eur Respir J. 2007;30(3):479–86.CrossRefPubMed
18.
go back to reference Powers SK, Criswell D, Lieu F-K, Dodd S, Silverman H. Diaphragmatic fiber type specific adaptation to endurance exercise. Respir Physiol. 1992;89(2):195–207.CrossRefPubMed Powers SK, Criswell D, Lieu F-K, Dodd S, Silverman H. Diaphragmatic fiber type specific adaptation to endurance exercise. Respir Physiol. 1992;89(2):195–207.CrossRefPubMed
19.
go back to reference Janssens L, Brumagne S, McConnell AK, Raymaekers J, Goossens N, Gayan-Ramirez G, et al. The assessment of inspiratory muscle fatigue in healthy individuals: a systematic review. Respir Med. 2013;107(3):331–46.CrossRefPubMed Janssens L, Brumagne S, McConnell AK, Raymaekers J, Goossens N, Gayan-Ramirez G, et al. The assessment of inspiratory muscle fatigue in healthy individuals: a systematic review. Respir Med. 2013;107(3):331–46.CrossRefPubMed
20.
go back to reference Minatel V. Análise das respostas ventilatórias, metabólicas e do controle autonômico cardiovascular durante testes de resistência muscular inspiratória e de determinação da pressão inspiratória e de determinação da pressão inspiratória crítica. São Carlos: Universidade Federal de São Carlos; 2017. [cited 29 Nov 2018]. Available from: https://repositorio.ufscar.br/handle/ufscar/10705 Minatel V. Análise das respostas ventilatórias, metabólicas e do controle autonômico cardiovascular durante testes de resistência muscular inspiratória e de determinação da pressão inspiratória e de determinação da pressão inspiratória crítica. São Carlos: Universidade Federal de São Carlos; 2017. [cited 29 Nov 2018]. Available from: https://​repositorio.​ufscar.​br/​handle/​ufscar/​10705
21.
go back to reference Monod H, Scherrer J. The work capacity of a synergic muscular group. Ergonomics. 1965;8(3):329–38.CrossRef Monod H, Scherrer J. The work capacity of a synergic muscular group. Ergonomics. 1965;8(3):329–38.CrossRef
23.
go back to reference Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. Critical power: implications for determination of V˙O2max and exercise tolerance. Med Sci Sports Exerc. 2010;42(10):1876–90.CrossRefPubMed Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. Critical power: implications for determination of V˙O2max and exercise tolerance. Med Sci Sports Exerc. 2010;42(10):1876–90.CrossRefPubMed
24.
go back to reference Moritani T, Nagata A, Devries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics. 1981;24(5):339–50.CrossRefPubMed Moritani T, Nagata A, Devries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics. 1981;24(5):339–50.CrossRefPubMed
25.
go back to reference Vanhatalo A, Doust JH, Burnley M. Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc. 2007;39(3):548–55.CrossRefPubMed Vanhatalo A, Doust JH, Burnley M. Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc. 2007;39(3):548–55.CrossRefPubMed
26.
go back to reference Dall’Ago P, Chiappa GRS, Guths H, Stein R, Ribeiro JP. Inspiratory muscle training in patients with heart failure and inspiratory muscle weakness: a randomized trial. J Am Coll Cardiol. 2006;47(4):757–63.CrossRefPubMed Dall’Ago P, Chiappa GRS, Guths H, Stein R, Ribeiro JP. Inspiratory muscle training in patients with heart failure and inspiratory muscle weakness: a randomized trial. J Am Coll Cardiol. 2006;47(4):757–63.CrossRefPubMed
27.
go back to reference Eastwood PR, Hillman DR, Morton AR, Finucane KE. The effects of learning on the ventilatory responses to inspiratory threshold loading. Am J Respir Crit Care Med. 1998;158(4):1190–6.CrossRefPubMed Eastwood PR, Hillman DR, Morton AR, Finucane KE. The effects of learning on the ventilatory responses to inspiratory threshold loading. Am J Respir Crit Care Med. 1998;158(4):1190–6.CrossRefPubMed
28.
go back to reference Neves LMT, Karsten M, Neves VR, Beltrame T, Borghi-Silva A, Catai AM. Relationship between inspiratory muscle capacity and peak exercise tolerance in patients post-myocardial infarction. Heart Lung. New York, United States. 2012;41(2):137–45.CrossRef Neves LMT, Karsten M, Neves VR, Beltrame T, Borghi-Silva A, Catai AM. Relationship between inspiratory muscle capacity and peak exercise tolerance in patients post-myocardial infarction. Heart Lung. New York, United States. 2012;41(2):137–45.CrossRef
29.
go back to reference Neves LF, Reis MH, Plentz RDM, Matte DL, Coronel CC, Sbruzzi G. Expiratory and expiratory plus inspiratory muscle training improves respiratory muscle strength in subjects with COPD: systematic review. Respir Care. 2014;59(9):1381–8.CrossRefPubMed Neves LF, Reis MH, Plentz RDM, Matte DL, Coronel CC, Sbruzzi G. Expiratory and expiratory plus inspiratory muscle training improves respiratory muscle strength in subjects with COPD: systematic review. Respir Care. 2014;59(9):1381–8.CrossRefPubMed
30.
go back to reference Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Rev Panam Salud Publica Pan Am J Public Health. 2015;38(6):506–14. Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Rev Panam Salud Publica Pan Am J Public Health. 2015;38(6):506–14.
31.
go back to reference AHA. Exercise testing and training of apparently healthy individuals: a handbook for physicians: Universidade de Michigan. Dallas: American Heart Association; 1972. p. 40. AHA. Exercise testing and training of apparently healthy individuals: a handbook for physicians: Universidade de Michigan. Dallas: American Heart Association; 1972. p. 40.
32.
go back to reference Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in Apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.CrossRefPubMed Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in Apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.CrossRefPubMed
33.
go back to reference Hautmann H, Hefele S, Schotten K, Huber RM. Maximal inspiratory mouth pressures (PIMAX) in healthy subjects—what is the lower limit of normal? Respir Med. 2000;94(7):689–93.CrossRefPubMed Hautmann H, Hefele S, Schotten K, Huber RM. Maximal inspiratory mouth pressures (PIMAX) in healthy subjects—what is the lower limit of normal? Respir Med. 2000;94(7):689–93.CrossRefPubMed
34.
go back to reference Perseguini NM, de Medeiros Takahashi AC, Milan JC, dos Santos PR, Neves VFC, Borghi-Silva A, et al. Effect of hormone replacement therapy on cardiac autonomic modulation. Clin Auton Res. 2014;24(2):63–70.CrossRefPubMed Perseguini NM, de Medeiros Takahashi AC, Milan JC, dos Santos PR, Neves VFC, Borghi-Silva A, et al. Effect of hormone replacement therapy on cardiac autonomic modulation. Clin Auton Res. 2014;24(2):63–70.CrossRefPubMed
35.
36.
go back to reference Souza RB. Pressões respiratórias estáticas Máximas. J Pneumol. 2002;28(3):155–64. Souza RB. Pressões respiratórias estáticas Máximas. J Pneumol. 2002;28(3):155–64.
37.
go back to reference Romer LM, McConnell AK. Inter-test reliability for non-invasive measures of respiratory muscle function in healthy humans. Eur J Appl Physiol. 2004;91(2–3):167–76.CrossRefPubMed Romer LM, McConnell AK. Inter-test reliability for non-invasive measures of respiratory muscle function in healthy humans. Eur J Appl Physiol. 2004;91(2–3):167–76.CrossRefPubMed
38.
go back to reference Neder JA, Andreoni S, Lerario MC, Nery LE. Reference values for lung function tests: II. Maximal respiratory pressures and voluntary ventilation. Braz J Med Biol Res. 1999;32(6):719–27.CrossRefPubMed Neder JA, Andreoni S, Lerario MC, Nery LE. Reference values for lung function tests: II. Maximal respiratory pressures and voluntary ventilation. Braz J Med Biol Res. 1999;32(6):719–27.CrossRefPubMed
39.
go back to reference Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, et al. Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010;122(2):191–225.CrossRefPubMed Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, et al. Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010;122(2):191–225.CrossRefPubMed
40.
go back to reference Higa MN, Silva E, Neves VFC, Catai AM, Gallo L Jr, Silva de Sá MF. Comparison of anaerobic threshold determined by visual and mathematical methods in healthy women. Braz J Med Biol Res. 2007;40(4):501–8.CrossRefPubMed Higa MN, Silva E, Neves VFC, Catai AM, Gallo L Jr, Silva de Sá MF. Comparison of anaerobic threshold determined by visual and mathematical methods in healthy women. Braz J Med Biol Res. 2007;40(4):501–8.CrossRefPubMed
41.
go back to reference Dempsey JA, Sheel AW, St Croix CM, Morgan BJ. Respiratory influences on sympathetic vasomotor outflow in humans. Respir Physiol Neurobiol. 2002;130(1):3–20.CrossRefPubMed Dempsey JA, Sheel AW, St Croix CM, Morgan BJ. Respiratory influences on sympathetic vasomotor outflow in humans. Respir Physiol Neurobiol. 2002;130(1):3–20.CrossRefPubMed
42.
go back to reference Wasserman K, editor. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. 5th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012. p. 572. Wasserman K, editor. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. 5th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012. p. 572.
43.
go back to reference Castello-Simões V, Minatel V, Karsten M, Simões RP, Perseguini NM, Milan JC, et al. Circulatory and ventilatory power: characterization in patients with coronary artery disease. Arq Bras Cardiol. 2015. Castello-Simões V, Minatel V, Karsten M, Simões RP, Perseguini NM, Milan JC, et al. Circulatory and ventilatory power: characterization in patients with coronary artery disease. Arq Bras Cardiol. 2015.
44.
go back to reference American Thoracic Society/European Respiratory Society. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166(4):518–624. American Thoracic Society/European Respiratory Society. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166(4):518–624.
45.
go back to reference Pereira CA de C, Sato T, Rodrigues SC. Novos valores de referência para espirometria forçada em brasileiros adultos de raça branca. J Bras Pneumol. 2007;33(4):397-406.CrossRefPubMed Pereira CA de C, Sato T, Rodrigues SC. Novos valores de referência para espirometria forçada em brasileiros adultos de raça branca. J Bras Pneumol. 2007;33(4):397-406.CrossRefPubMed
46.
go back to reference Neves LMT, Karsten M, Neves VR, Beltrame T, Borghi-Silva A, Catai AM. Respiratory muscle endurance is limited by lower ventilatory efficiency in post-myocardial infarction patients. Braz J Phys Ther. 2014;18(1):1–8.CrossRefPubMed Neves LMT, Karsten M, Neves VR, Beltrame T, Borghi-Silva A, Catai AM. Respiratory muscle endurance is limited by lower ventilatory efficiency in post-myocardial infarction patients. Braz J Phys Ther. 2014;18(1):1–8.CrossRefPubMed
47.
go back to reference Shadgan B, Guenette JA, Sheel AW, Reid WD. Sternocleidomastoid muscle deoxygenation in response to incremental inspiratory threshold loading measured by near infrared spectroscopy. Respir Physiol Neurobiol. 2011;178(2):202–9.CrossRefPubMed Shadgan B, Guenette JA, Sheel AW, Reid WD. Sternocleidomastoid muscle deoxygenation in response to incremental inspiratory threshold loading measured by near infrared spectroscopy. Respir Physiol Neurobiol. 2011;178(2):202–9.CrossRefPubMed
48.
go back to reference Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York: Taylor & Francis Inc.; 1988. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York: Taylor & Francis Inc.; 1988.
50.
go back to reference Schulz KF, Altman DG, Moher D, for the CONSORT Group. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340(mar23 1):c332.CrossRefPubMed Schulz KF, Altman DG, Moher D, for the CONSORT Group. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340(mar23 1):c332.CrossRefPubMed
51.
go back to reference Burd NA, Holwerda AM, Selby KC, West DWD, Staples AW, Cain NE, et al. Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men: resistance exercise volume and myofibrillar protein synthesis. J Physiol. 2010;588(16):3119–30.CrossRefPubMed Burd NA, Holwerda AM, Selby KC, West DWD, Staples AW, Cain NE, et al. Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men: resistance exercise volume and myofibrillar protein synthesis. J Physiol. 2010;588(16):3119–30.CrossRefPubMed
Metadata
Title
Critical inspiratory pressure – a new methodology for evaluating and training the inspiratory musculature for recreational cyclists: study protocol for a randomized controlled trial
Authors
Patricia Rehder-Santos
Vinicius Minatel
Juliana Cristina Milan-Mattos
Étore De Favari Signini
Raphael Martins de Abreu
Carla Cristina Dato
Aparecida Maria Catai
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Trials / Issue 1/2019
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-019-3353-0

Other articles of this Issue 1/2019

Trials 1/2019 Go to the issue