Skip to main content
Top
Published in: Trials 1/2019

Open Access 01-12-2019 | Central Venous Catheter | Study protocol

Effect of multi-lumen perfusion line on catheter-related bacteremia in premature infants: study protocol for a cluster-randomized crossover trial

Authors: Aurélie Maiguy-Foinard, Bertrand Décaudin, Pierre Tourneux, Bernard Guillois, Thierry Blanc, Sophie Galène-Gromez, Morgane Masse, Pascal Odou, Fannette Denies, Benoît Dervaux, Alain Duhamel, Laurent Storme

Published in: Trials | Issue 1/2019

Login to get access

Abstract

Background

Catheter-related bacteremia (CRB) is the most frequent nosocomial infection in neonatal intensive care unit (NICU) patients, especially in very low-birth-weight infants. Administration of injectable drugs in premature newborn infants has many particularities and several types of infusion incidents have been reported. The Edelvaiss® Multiline NEO device is a novel multi-lumen access infusion device adapted to the specificities of infusion in neonatology. This multicenter, randomized, controlled study was therefore designed to determine whether or not Edelvaiss® Multiline NEO reduces the risk of CRB in preterm newborn infants in an NICU.

Methods/design

This is a multicenter, randomized, controlled trial, using a cluster-randomized crossover design. Four investigator centers (four clusters) will participate in the study and will be randomized into two groups, corresponding to two different sequences (either the Edelvaiss® Multiline NEO or standard infusion system sequence, then vice versa). A total of 280 patients will be recruited. Infants will be enrolled in the study at the time of placing a single-lumen central venous catheter. Three visits recording specific data are planned in the study protocol. The primary outcome measure is the incidence density (ID) of CRB. For each patient, the total number of catheters and CRB incidents as well as the duration of stay in the NICU will be computed and considered for analysis.

Discussion

The study will provide high-quality evidence to determine whether the Multiline NEO device reduces the risk of CRB in preterm newborns in NICUs or not.

Trial registration

ClinicalTrials.gov, NCT02633124. Registered on 7 December 2015.
Appendix
Available only for authorised users
Literature
1.
go back to reference CClin Paris-Nord. Monitoring report of central venous catheters in neonatology. Results 2013. 2015. CClin Paris-Nord. Monitoring report of central venous catheters in neonatology. Results 2013. 2015.
2.
go back to reference Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics. 2002;110:285–91.CrossRef Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics. 2002;110:285–91.CrossRef
3.
go back to reference Leroyer A, Bedu A, Lombrail P, Desplanques L, Diakite B, Bingen E, et al. Prolongation of hospital stay and extra costs due to hospital-acquired infection in a neonatal unit. J Hosp Infect. 1997;35:37–45.CrossRef Leroyer A, Bedu A, Lombrail P, Desplanques L, Diakite B, Bingen E, et al. Prolongation of hospital stay and extra costs due to hospital-acquired infection in a neonatal unit. J Hosp Infect. 1997;35:37–45.CrossRef
4.
go back to reference Payne NR, Carpenter JH, Badger GJ, Horbar JD, Rogowski J. Marginal increase in cost and excess length of stay associated with nosocomial bloodstream infections in surviving very low birth weight infants. Pediatrics. 2004;114:348–55.CrossRef Payne NR, Carpenter JH, Badger GJ, Horbar JD, Rogowski J. Marginal increase in cost and excess length of stay associated with nosocomial bloodstream infections in surviving very low birth weight infants. Pediatrics. 2004;114:348–55.CrossRef
5.
go back to reference Mitha A, Foix-L’Hélias L, Arnaud C, Marret S, Vieux R, Aujard Y, EPIPAGE Study Group, et al. Neonatal infection and 5-year neurodevelopmental outcome of very preterm infants. Pediatrics. 2013;132:e372–80.CrossRef Mitha A, Foix-L’Hélias L, Arnaud C, Marret S, Vieux R, Aujard Y, EPIPAGE Study Group, et al. Neonatal infection and 5-year neurodevelopmental outcome of very preterm infants. Pediatrics. 2013;132:e372–80.CrossRef
6.
go back to reference Mahieu LM, De Dooy JJ, Lenaerts AE, Leven MM, De Muynck AO. Catheter manipulations and the risk of catheter-associated bloodstream infection in neonatal intensive care unit patients. J Hosp Infect. 2001;48:20–6.CrossRef Mahieu LM, De Dooy JJ, Lenaerts AE, Leven MM, De Muynck AO. Catheter manipulations and the risk of catheter-associated bloodstream infection in neonatal intensive care unit patients. J Hosp Infect. 2001;48:20–6.CrossRef
7.
go back to reference Sherwin CMT, Medlicott NJ, Reith DM, Broadbent RS. Intravenous drug delivery in neonates: lessons learnt. Arch Dis Child. 2014;99:590–4.CrossRef Sherwin CMT, Medlicott NJ, Reith DM, Broadbent RS. Intravenous drug delivery in neonates: lessons learnt. Arch Dis Child. 2014;99:590–4.CrossRef
8.
go back to reference van der Eijk AC, van Rens RMFPT, Dankelman J, Smit BJ. A literature review on flow-rate variability in neonatal IV therapy. Paediatr Anaesth. 2013;23:9–21.CrossRef van der Eijk AC, van Rens RMFPT, Dankelman J, Smit BJ. A literature review on flow-rate variability in neonatal IV therapy. Paediatr Anaesth. 2013;23:9–21.CrossRef
9.
go back to reference Kalikstad B, Skjerdal Å, Hansen TWR. Compatibility of drug infusions in the NICU. Arch Dis Child. 2010;95:745–8.CrossRef Kalikstad B, Skjerdal Å, Hansen TWR. Compatibility of drug infusions in the NICU. Arch Dis Child. 2010;95:745–8.CrossRef
10.
go back to reference Septimus EJ, Moody J. Prevention of device-related healthcare-associated infections. F1000Res. 2016;5:65. Septimus EJ, Moody J. Prevention of device-related healthcare-associated infections. F1000Res. 2016;5:65.
11.
go back to reference Jack T, Boehne M, Brent BE, Hoy L, Köditz H, Wessel A, et al. In-line filtration reduces severe complications and length of stay on pediatric intensive care unit: a prospective, randomized, controlled trial. Intensive Care Med. 2012;38:1008–16.CrossRef Jack T, Boehne M, Brent BE, Hoy L, Köditz H, Wessel A, et al. In-line filtration reduces severe complications and length of stay on pediatric intensive care unit: a prospective, randomized, controlled trial. Intensive Care Med. 2012;38:1008–16.CrossRef
12.
go back to reference Foinard A, Décaudin B, Barthélémy C, Debaene B, Odou P. Prevention of drug delivery disturbances during continuous intravenous infusion: An in vitro study on a new multi-lumen infusion access device. Ann Fr Anesth Reanim. 2013;32:107–12.CrossRef Foinard A, Décaudin B, Barthélémy C, Debaene B, Odou P. Prevention of drug delivery disturbances during continuous intravenous infusion: An in vitro study on a new multi-lumen infusion access device. Ann Fr Anesth Reanim. 2013;32:107–12.CrossRef
13.
go back to reference Foinard A, Décaudin B, Barthélémy C, Debaene B, Odou P. Impact of multi-lumen infusion devices on the occurrence of known drug physical incompatibility: a controlled in vitro study. Anesth Analg. 2013;116:101–6.CrossRef Foinard A, Décaudin B, Barthélémy C, Debaene B, Odou P. Impact of multi-lumen infusion devices on the occurrence of known drug physical incompatibility: a controlled in vitro study. Anesth Analg. 2013;116:101–6.CrossRef
14.
go back to reference Perez M, Décaudin B, Foinard A, Barthélémy C, Debaene B, Lebuffe G, Odou P. Compatibility of medications during multi-infusion therapy: A controlled in vitro study on a multilumen infusion device. Anaesth Crit Care Pain Med. 2015;34(2):83–8.CrossRef Perez M, Décaudin B, Foinard A, Barthélémy C, Debaene B, Lebuffe G, Odou P. Compatibility of medications during multi-infusion therapy: A controlled in vitro study on a multilumen infusion device. Anaesth Crit Care Pain Med. 2015;34(2):83–8.CrossRef
15.
go back to reference Schulz KF, Altman DG, Moher D, CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2011;9:672–7.CrossRef Schulz KF, Altman DG, Moher D, CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2011;9:672–7.CrossRef
16.
go back to reference Erdei C, McAvoy LL, Gupta M, Pereira S, McGowan EC. Is zero central line-associated bloodstream infection rate sustainable? A 5-year perspective. Pediatrics. 2015;135:e1485–93.CrossRef Erdei C, McAvoy LL, Gupta M, Pereira S, McGowan EC. Is zero central line-associated bloodstream infection rate sustainable? A 5-year perspective. Pediatrics. 2015;135:e1485–93.CrossRef
17.
go back to reference Giraudeau B, Ravaud P, Donner A. Sample size calculation for cluster randomized cross-over trials. Statist Med. 2008;27:5578–85.CrossRef Giraudeau B, Ravaud P, Donner A. Sample size calculation for cluster randomized cross-over trials. Statist Med. 2008;27:5578–85.CrossRef
18.
go back to reference Van Duijn PJ, Bonten MJM. Antibiotic rotation strategies to reduce antimicrobial resistance in Gram-negative bacteria in European intensive care units: study protocol for a cluster-randomized crossover controlled trial. Trials. 2014;15:277.CrossRef Van Duijn PJ, Bonten MJM. Antibiotic rotation strategies to reduce antimicrobial resistance in Gram-negative bacteria in European intensive care units: study protocol for a cluster-randomized crossover controlled trial. Trials. 2014;15:277.CrossRef
19.
go back to reference Turner RM, White IR, Croudace T for the PIP Study Group. Analysis of cluster randomized cross-over trial data: a comparison of methods. Statist Med. 2007;26:274–89.CrossRef Turner RM, White IR, Croudace T for the PIP Study Group. Analysis of cluster randomized cross-over trial data: a comparison of methods. Statist Med. 2007;26:274–89.CrossRef
20.
go back to reference L’Hériteau F, Lacavé L, Leboucher B, Decousser JW, De Chillaz C, Astagneau P, Aujard Y, le comité de pilotage du Réseau NEOCAT. NEOCAT, surveillance network of catheter-related bloodstream infections in neonates: 2010 data. Arch Pediatr. 2012;19:984–9.CrossRef L’Hériteau F, Lacavé L, Leboucher B, Decousser JW, De Chillaz C, Astagneau P, Aujard Y, le comité de pilotage du Réseau NEOCAT. NEOCAT, surveillance network of catheter-related bloodstream infections in neonates: 2010 data. Arch Pediatr. 2012;19:984–9.CrossRef
Metadata
Title
Effect of multi-lumen perfusion line on catheter-related bacteremia in premature infants: study protocol for a cluster-randomized crossover trial
Authors
Aurélie Maiguy-Foinard
Bertrand Décaudin
Pierre Tourneux
Bernard Guillois
Thierry Blanc
Sophie Galène-Gromez
Morgane Masse
Pascal Odou
Fannette Denies
Benoît Dervaux
Alain Duhamel
Laurent Storme
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Trials / Issue 1/2019
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-019-3218-6

Other articles of this Issue 1/2019

Trials 1/2019 Go to the issue