Skip to main content
Top
Published in: Trials 1/2018

Open Access 01-12-2018 | Commentary

New guidance to improve sample size calculations for trials: eliciting the target difference

Author: Melanie L. Bell

Published in: Trials | Issue 1/2018

Login to get access

Abstract

Background

Sample size calculations are central to the design of health research trials. To ensure that the trial provides good evidence to answer the trial’s research question, the target effect size (difference in means or proportions, odds ratio, relative risk or hazard ratio between trial arms) must be specified under the conventional approach to determining the sample size. However, until now, there has not been comprehensive guidance on how to specify this effect.

Main text

This is a commentary on a collection of papers from two important projects, DELTA (Difference ELicitation in TriAls) and DELTA2 that aim to provide evidence-based guidance on systematically determining the target effect size, or difference and the resultant sample sizes for trials. In addition to surveying methods that researchers are using in practice, the research team met with various experts (statisticians, methodologists, clinicians and funders); reviewed guidelines from funding agencies; and reviewed recent methodological literature. The DELTA2 guidance stresses specifying important and realistic differences, and undertaking sensitivity analyses in calculating sample sizes. It gives recommendations on how to find appropriate differences, conduct the sample size calculation(s) and how to report these in grant applications, protocols and manuscripts. It is hoped that this will contribute not only to better powered studies, but better reporting and reproducibility and thinking about what a trial should be designed to achieve.

Conclusions

The DELTA researchers have developed a set of comprehensive guidance documents that are welcome and will almost certainly improve the way that trials are designed and reported.
Literature
1.
go back to reference Gelfond JAL, Heitman E, Pollock BH, Klugman CM. Principles for the ethical analysis of clinical and translational research. Stat Med. 2011;30(23):2785–92.CrossRef Gelfond JAL, Heitman E, Pollock BH, Klugman CM. Principles for the ethical analysis of clinical and translational research. Stat Med. 2011;30(23):2785–92.CrossRef
2.
go back to reference Cook JA, Julious S, Sones W, Hampson L, Hewitt C, Berlin J, Ashby D, Emsley R, Fergusson D, Walters S, et al. DELTA2 guidance on choosing the target difference and undertaking and reporting the sample size calculation for a randomised controlled trial. In Submission. Cook JA, Julious S, Sones W, Hampson L, Hewitt C, Berlin J, Ashby D, Emsley R, Fergusson D, Walters S, et al. DELTA2 guidance on choosing the target difference and undertaking and reporting the sample size calculation for a randomised controlled trial. In Submission.
3.
go back to reference Cook JA, Hislop J, Altman DG, Fayers P, Briggs AH, Ramsay CR, Norrie JD, Harvey IM, Buckley B, Fergusson D, et al. Specifying the target difference in the primary outcome for a randomised controlled trial: guidance for researchers. Trials. 2015;16(1):1–7.CrossRef Cook JA, Hislop J, Altman DG, Fayers P, Briggs AH, Ramsay CR, Norrie JD, Harvey IM, Buckley B, Fergusson D, et al. Specifying the target difference in the primary outcome for a randomised controlled trial: guidance for researchers. Trials. 2015;16(1):1–7.CrossRef
4.
go back to reference Cook JA, Julious SA, Sones W, Rothwell JC, Ramsay CR, Hampson LV, Emsley R, Walters SJ, Hewitt C, Bland M. Choosing the target difference (“effect size”) for a randomised controlled trial-DELTA 2 guidance protocol. Trials. 2017;18(1):271.CrossRef Cook JA, Julious SA, Sones W, Rothwell JC, Ramsay CR, Hampson LV, Emsley R, Walters SJ, Hewitt C, Bland M. Choosing the target difference (“effect size”) for a randomised controlled trial-DELTA 2 guidance protocol. Trials. 2017;18(1):271.CrossRef
5.
go back to reference Rothwell J, Julious S, Cooper C. A study of target effect sizes in randomised controlled trials published in the Health Technology Assessment Journal. In Submission. Rothwell J, Julious S, Cooper C. A study of target effect sizes in randomised controlled trials published in the Health Technology Assessment Journal. In Submission.
6.
go back to reference Sones W, Julious S, Rothwell J, Ramsay C, Hampson L, Emsley R, Walters S, Hewitt C, Fergusson D, Berlin J, et al. Choosing the target difference (“effect size”) for a randomised controlled trial—the development of the DELTA2 guidance. In Submission. 18:271 https://doi.org/10.1186/s13063-017-1969-5. Sones W, Julious S, Rothwell J, Ramsay C, Hampson L, Emsley R, Walters S, Hewitt C, Fergusson D, Berlin J, et al. Choosing the target difference (“effect size”) for a randomised controlled trial—the development of the DELTA2 guidance. In Submission. 18:271 https://​doi.​org/​10.​1186/​s13063-017-1969-5.
7.
go back to reference Cook JA, Hislop JM, Adewuyi TE, Harrild KA, Altman DG, Ramsay CR, Fraser C, Buckley B, Fayers P, Harvey I. Assessing methods to specify the target difference for a randomised controlled trial: DELTA (Difference ELicitation in TriAls) review. Health Technol Assess. 2014. https://doi.org/10.3310/hta18280. Cook JA, Hislop JM, Adewuyi TE, Harrild KA, Altman DG, Ramsay CR, Fraser C, Buckley B, Fayers P, Harvey I. Assessing methods to specify the target difference for a randomised controlled trial: DELTA (Difference ELicitation in TriAls) review. Health Technol Assess. 2014. https://​doi.​org/​10.​3310/​hta18280.
8.
go back to reference Revicki D, Hays RD, Cella D, Sloan J. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. J Clin Epidemiol. 2008;61(2):102–9.CrossRef Revicki D, Hays RD, Cella D, Sloan J. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. J Clin Epidemiol. 2008;61(2):102–9.CrossRef
9.
go back to reference Kraemer HC, Mintz J, Noda A, Tinklenberg J, Yesavage JA. Caution regarding the use of pilot studies to guide power calculations for study proposals. Arch Gen Psychiatry. 2006;63(5):484–9.CrossRef Kraemer HC, Mintz J, Noda A, Tinklenberg J, Yesavage JA. Caution regarding the use of pilot studies to guide power calculations for study proposals. Arch Gen Psychiatry. 2006;63(5):484–9.CrossRef
10.
go back to reference Thabane L, Mbuagbaw L, Zhang S, Samaan Z, Marcucci M, Ye C, Thabane M, Giangregorio L, Dennis B, Kosa D, et al. A tutorial on sensitivity analyses in clinical trials: the what, why, when and how. BMC Med Res Methodol. 2013;13(1):92.CrossRef Thabane L, Mbuagbaw L, Zhang S, Samaan Z, Marcucci M, Ye C, Thabane M, Giangregorio L, Dennis B, Kosa D, et al. A tutorial on sensitivity analyses in clinical trials: the what, why, when and how. BMC Med Res Methodol. 2013;13(1):92.CrossRef
11.
go back to reference Bell ML, Whitehead AL, Julious SA. Guidance for using pilot studies to inform the design of intervention trials with continuous outcomes. Clin Epidemiol. 2018;10:153–7.CrossRef Bell ML, Whitehead AL, Julious SA. Guidance for using pilot studies to inform the design of intervention trials with continuous outcomes. Clin Epidemiol. 2018;10:153–7.CrossRef
12.
go back to reference Altman DG. Endorsement of the CONSORT statement by high impact medical journals: survey of instructions for authors. BMJ. 2005;330(7499):1056–7.CrossRef Altman DG. Endorsement of the CONSORT statement by high impact medical journals: survey of instructions for authors. BMJ. 2005;330(7499):1056–7.CrossRef
13.
go back to reference Charles P, Giraudeau B, Dechartres A, Baron G, Ravaud P. Reporting of sample size calculation in randomised controlled trials: review. BMJ. 2009;338:b1732.CrossRef Charles P, Giraudeau B, Dechartres A, Baron G, Ravaud P. Reporting of sample size calculation in randomised controlled trials: review. BMJ. 2009;338:b1732.CrossRef
14.
go back to reference Bell ML, Teixeira-Pinto A, McKenzie JE, Olivier J. A myriad of methods: calculated sample size for two proportions was dependent on the choice of sample size formula and software. J Clin Epidemiol. 2014;67(5):601–5.CrossRef Bell ML, Teixeira-Pinto A, McKenzie JE, Olivier J. A myriad of methods: calculated sample size for two proportions was dependent on the choice of sample size formula and software. J Clin Epidemiol. 2014;67(5):601–5.CrossRef
15.
go back to reference Little RJ, D'Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, Frangakis C, Hogan JW, Molenberghs G, Murphy SA, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367(14):1355–60.CrossRef Little RJ, D'Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, Frangakis C, Hogan JW, Molenberghs G, Murphy SA, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367(14):1355–60.CrossRef
16.
go back to reference Revicki D, Fairclough D. Preventing missing data. In: Assessing quality of life in clinical trials: methods and practice. 2nd ed; 2005. p. 167–78. Revicki D, Fairclough D. Preventing missing data. In: Assessing quality of life in clinical trials: methods and practice. 2nd ed; 2005. p. 167–78.
17.
go back to reference King MT, Bell ML, Costa D, Butow P, Oh B. The Quality of Life Questionnaire core 30 (QLQ-C30) and Functional Assessment of Cancer-General (FACT-G) differ in responsiveness, relative efficiency, and therefore required sample size. J Clin Epidemiol. 2014;67(1):100–7.CrossRef King MT, Bell ML, Costa D, Butow P, Oh B. The Quality of Life Questionnaire core 30 (QLQ-C30) and Functional Assessment of Cancer-General (FACT-G) differ in responsiveness, relative efficiency, and therefore required sample size. J Clin Epidemiol. 2014;67(1):100–7.CrossRef
18.
go back to reference Senn SS. Statistical issues in drug development. Chichester: Wiley; 1997. Senn SS. Statistical issues in drug development. Chichester: Wiley; 1997.
Metadata
Title
New guidance to improve sample size calculations for trials: eliciting the target difference
Author
Melanie L. Bell
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Trials / Issue 1/2018
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-018-2894-y

Other articles of this Issue 1/2018

Trials 1/2018 Go to the issue