Skip to main content
Top
Published in: Trials 1/2018

Open Access 01-12-2018 | Study protocol

Effects of hemodynamic monitoring using a single-use transesophageal echocardiography probe in critically ill patients – study protocol for a randomized controlled trial

Authors: Luca Cioccari, Bjoern Zante, Andreas Bloch, David Berger, Andreas Limacher, Stephan M. Jakob, Jukka Takala, Tobias M. Merz

Published in: Trials | Issue 1/2018

Login to get access

Abstract

Background

Hemodynamic instability is one of the leading causes of intensive care unit (ICU) admission. Early stabilization of hemodynamics is associated with improved outcome. The monitoring used to guide hemodynamic support may influence the time needed to achieve stable hemodynamics. Visualization of the heart using echocardiography offers the advantage of direct measurement of cardiac volumes and ventricular function. A miniaturized monoplane transesophageal echocardiography (TEE) probe was developed, allowing for almost continuous qualitative hemodynamic TEE assessment (hTEE) after brief bedside training. The primary objective of the study is to assess whether hemodynamic monitoring using the hTEE technology shortens time to resolution of shock in ICU patients in comparison to standard monitoring using a central venous catheter, pulmonary artery catheter, or conventional echocardiography.

Methods

Five hundred consecutive subjects with circulatory shock (low mean arterial blood pressure (MAP) and signs of organ hypoperfusion) at the time of ICU admission are included in the study. The subjects are randomly assigned to one of four groups using a 2 × 2 factorial design stratified by method of hemodynamic monitoring (hTEE vs standard hemodynamic monitoring) and frequency of hemodynamic assessments (minimum every 4 h vs standard of care). The primary study outcome is the time from study inclusion to resolution of circulatory shock, defined as MAP >  60 mmHg for ≥ 4 h after discontinuation of vasopressors and inotropes. The hTEE monitoring consists of the acquisition of three defined echocardiography views: Transgastric mid-esophageal short axis with measurement of fractional area change of left ventricle, mid-esophageal four-chamber view with measurement of the ratio of right to left ventricular area, and mid-esophageal ascending aortic short-axis view with measurement of the superior vena cava collapsibility index. In the control groups, monitoring modalities, including conventional TTE and TEE but not hTEE, are at the discretion of the treating physician. The interpretation of hemodynamic monitoring and the subsequent changes in patient management are recorded after each hemodynamic assessment. Differences in the primary and further secondary time-to-event outcomes will be assessed using a competing risk model accounting for the competing risk of death.

Discussion

The effect of using echocardiography as a monitoring modality on relevant patient outcomes has not been established so far. The study at hand may be one of the first trials to provide detailed data on effectiveness and safety of echocardiography to guide treatment in patients with circulatory shock.

Trial registration

Appendix
Available only for authorised users
Literature
1.
go back to reference Robin E, Costecalde M, Lebuffe G, Vallet B. Clinical relevance of data from the pulmonary artery catheter. Crit Care. 2006;10(Suppl 3):S3.CrossRef Robin E, Costecalde M, Lebuffe G, Vallet B. Clinical relevance of data from the pulmonary artery catheter. Crit Care. 2006;10(Suppl 3):S3.CrossRef
2.
go back to reference Ospina-Tascon GA, Cordioli RL, Vincent JL. What type of monitoring has been shown to improve outcomes in acutely ill patients? Intensive Care Med. 2008;34:800–20.CrossRef Ospina-Tascon GA, Cordioli RL, Vincent JL. What type of monitoring has been shown to improve outcomes in acutely ill patients? Intensive Care Med. 2008;34:800–20.CrossRef
3.
go back to reference Hadian M, Kim HK, Severyn DA, Pinsky MR. Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters. Crit Care. 2010;14:R212.CrossRef Hadian M, Kim HK, Severyn DA, Pinsky MR. Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters. Crit Care. 2010;14:R212.CrossRef
4.
go back to reference Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, Pinsky MR, Hofer CK, Teboul JL, de Boode WP, et al. Clinical review: update on hemodynamic monitoring—a consensus of 16. Crit Care. 2011;15:229.CrossRef Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, Pinsky MR, Hofer CK, Teboul JL, de Boode WP, et al. Clinical review: update on hemodynamic monitoring—a consensus of 16. Crit Care. 2011;15:229.CrossRef
5.
go back to reference Noritomi DT, Vieira ML, Mohovic T, Bastos JF, Cordioli RL, Akamine N, Fischer CH. Echocardiography for hemodynamic evaluation in the intensive care unit. Shock. 2010;34(Suppl 1):59–62.CrossRef Noritomi DT, Vieira ML, Mohovic T, Bastos JF, Cordioli RL, Akamine N, Fischer CH. Echocardiography for hemodynamic evaluation in the intensive care unit. Shock. 2010;34(Suppl 1):59–62.CrossRef
6.
go back to reference Vignon P, Mentec H, Terre S, Gastinne H, Gueret P, Lemaire F. Diagnostic accuracy and therapeutic impact of transthoracic and transesophageal echocardiography in mechanically ventilated patients in the ICU. Chest. 1994;106:1829–34.CrossRef Vignon P, Mentec H, Terre S, Gastinne H, Gueret P, Lemaire F. Diagnostic accuracy and therapeutic impact of transthoracic and transesophageal echocardiography in mechanically ventilated patients in the ICU. Chest. 1994;106:1829–34.CrossRef
7.
go back to reference Jensen MB, Sloth E, Larsen KM, Schmidt MB. Transthoracic echocardiography for cardiopulmonary monitoring in intensive care. Eur J Anaesthesiol. 2004;21:700–7.CrossRef Jensen MB, Sloth E, Larsen KM, Schmidt MB. Transthoracic echocardiography for cardiopulmonary monitoring in intensive care. Eur J Anaesthesiol. 2004;21:700–7.CrossRef
8.
go back to reference Vieillard-Baron A, Mayo PH, Vignon P, Cholley B, Slama M, Pinsky MR, McLean A, Choi G, Beaulieu Y, Arntfield R, Koenig S, Colreavy F, Canivet JL, De Backer D. International consensus statement on training standards for advanced critical care echocardiography. Intensive Care Med. 2014;40:654–666. Vieillard-Baron A, Mayo PH, Vignon P, Cholley B, Slama M, Pinsky MR, McLean A, Choi G, Beaulieu Y, Arntfield R, Koenig S, Colreavy F, Canivet JL, De Backer D. International consensus statement on training standards for advanced critical care echocardiography. Intensive Care Med. 2014;40:654–666.
9.
go back to reference Charron C, Vignon P, Prat G, Tonnelier A, Aegerter P, Boles JM, Amiel JB, Vieillard-Baron A. Number of supervised studies required to reach competence in advanced critical care transesophageal echocardiography. Intensive Care Med. 2013;39(6):1019-24.CrossRef Charron C, Vignon P, Prat G, Tonnelier A, Aegerter P, Boles JM, Amiel JB, Vieillard-Baron A. Number of supervised studies required to reach competence in advanced critical care transesophageal echocardiography. Intensive Care Med. 2013;39(6):1019-24.CrossRef
10.
go back to reference Vignon P, Merz TM, Vieillard-Baron A. Ten reasons for performing hemodynamic monitoring using transesophageal echocardiography. Intensive Care Med. 2017;43(7):1048-1051.CrossRef Vignon P, Merz TM, Vieillard-Baron A. Ten reasons for performing hemodynamic monitoring using transesophageal echocardiography. Intensive Care Med. 2017;43(7):1048-1051.CrossRef
11.
go back to reference Vieillard-Baron A, Slama M, Mayo P, Charron C, Amiel JB, Esterez C, Leleu F, Repesse X, Vignon P. A pilot study on safety and clinical utility of a single-use 72-hour indwelling transesophageal echocardiography probe. Intensive Care Med. 2013;39(4):629–35.CrossRef Vieillard-Baron A, Slama M, Mayo P, Charron C, Amiel JB, Esterez C, Leleu F, Repesse X, Vignon P. A pilot study on safety and clinical utility of a single-use 72-hour indwelling transesophageal echocardiography probe. Intensive Care Med. 2013;39(4):629–35.CrossRef
12.
go back to reference Cioccari L, Baur HR, Berger D, Wiegand J, Takala J, Merz TM. Hemodynamic assessment of critically ill patients using a miniaturized transesophageal echocardiography probe. Crit Care. 2013;17:R121.CrossRef Cioccari L, Baur HR, Berger D, Wiegand J, Takala J, Merz TM. Hemodynamic assessment of critically ill patients using a miniaturized transesophageal echocardiography probe. Crit Care. 2013;17:R121.CrossRef
13.
go back to reference Doig GS, Simpson F. Randomization and allocation concealment: a practical guide for researchers. J Crit Care. 2005;20:187–91. discussion 191-183CrossRef Doig GS, Simpson F. Randomization and allocation concealment: a practical guide for researchers. J Crit Care. 2005;20:187–91. discussion 191-183CrossRef
14.
go back to reference Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, Jardin F. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30:1734–9.CrossRef Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, Jardin F. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30:1734–9.CrossRef
15.
go back to reference Takala J, Dellinger RP, Koskinen K, St Andre A, Read M, Levy M, Jakob SM, Mello PV, Friolet R, Ruokonen E. Development and simultaneous application of multiple care protocols in critical care: a multicenter feasibility study. Intensive Care Med. 2008;34:1401–10.CrossRef Takala J, Dellinger RP, Koskinen K, St Andre A, Read M, Levy M, Jakob SM, Mello PV, Friolet R, Ruokonen E. Development and simultaneous application of multiple care protocols in critical care: a multicenter feasibility study. Intensive Care Med. 2008;34:1401–10.CrossRef
16.
go back to reference Barthel FM-S, Royston P, Babiker A. A menu-driven facility for complex sample size calculation in randomized controlled trials with a survival or a binary outcome: update. Stata J. 2005;5:123–9. Barthel FM-S, Royston P, Babiker A. A menu-driven facility for complex sample size calculation in randomized controlled trials with a survival or a binary outcome: update. Stata J. 2005;5:123–9.
17.
go back to reference Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.CrossRef Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.CrossRef
18.
go back to reference Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Katus HA, Lindahl B, Morrow DA, Clemmensen PM, et al. Third universal definition of myocardial infarction. Circulation. 2012;126:2020–35.CrossRef Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Katus HA, Lindahl B, Morrow DA, Clemmensen PM, et al. Third universal definition of myocardial infarction. Circulation. 2012;126:2020–35.CrossRef
19.
go back to reference De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, Brasseur A, Defrance P, Gottignies P, Vincent JL. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–89.CrossRef De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, Brasseur A, Defrance P, Gottignies P, Vincent JL. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–89.CrossRef
20.
go back to reference Malbrain M, De Tavernier B, Haverals S, Slama M, Vieillard-Baron A, Wong A, Poelaert J, Monnet X, Stockman W, Elbers P, Lichtenstein D. Executive summary on the use of ultrasound in the critically ill: consensus report from the 3rd course on acute care ultrasound (CACU). Anaesthesiol Intensive Ther. 2017;49:393–411.CrossRef Malbrain M, De Tavernier B, Haverals S, Slama M, Vieillard-Baron A, Wong A, Poelaert J, Monnet X, Stockman W, Elbers P, Lichtenstein D. Executive summary on the use of ultrasound in the critically ill: consensus report from the 3rd course on acute care ultrasound (CACU). Anaesthesiol Intensive Ther. 2017;49:393–411.CrossRef
21.
go back to reference Jansen TC, Bakker J, Kompanje EJ. Inability to obtain deferred consent due to early death in emergency research: effect on validity of clinical trial results. Intensive Care Med. 2010;36:1962–5.CrossRef Jansen TC, Bakker J, Kompanje EJ. Inability to obtain deferred consent due to early death in emergency research: effect on validity of clinical trial results. Intensive Care Med. 2010;36:1962–5.CrossRef
22.
go back to reference Jansen TC, Kompanje EJ, Bakker J. Deferred proxy consent in emergency critical care research: ethically valid and practically feasible. Crit Care Med. 2009;37:S65–8.CrossRef Jansen TC, Kompanje EJ, Bakker J. Deferred proxy consent in emergency critical care research: ethically valid and practically feasible. Crit Care Med. 2009;37:S65–8.CrossRef
Metadata
Title
Effects of hemodynamic monitoring using a single-use transesophageal echocardiography probe in critically ill patients – study protocol for a randomized controlled trial
Authors
Luca Cioccari
Bjoern Zante
Andreas Bloch
David Berger
Andreas Limacher
Stephan M. Jakob
Jukka Takala
Tobias M. Merz
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Trials / Issue 1/2018
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-018-2714-4

Other articles of this Issue 1/2018

Trials 1/2018 Go to the issue