Skip to main content
Top
Published in: Trials 1/2017

Open Access 01-12-2017 | Study protocol

A primary school active break programme (ACTI-BREAK): study protocol for a pilot cluster randomised controlled trial

Authors: Amanda Watson, Anna Timperio, Helen Brown, Kylie D. Hesketh

Published in: Trials | Issue 1/2017

Login to get access

Abstract

Background

Levels of overall physical activity have been shown to decline across childhood. Schools are considered ideal settings to promote physical activity as children spend a large amount of their waking hours at school. Time-efficient physical activity strategies that demonstrate a positive impact on academic-related outcomes are needed to enable physical activity to be prioritised in the school day. The ACTI-BREAK programme requires classroom teachers to integrate active breaks; 5-min bursts of moderate-intensity physical activity into their classroom routine. Active breaks have been shown to be effective in improving academic-related outcomes, a potentially appealing aspect for teachers and schools. The primary aim of this study is to assess the feasibility and potential efficacy of the ACTI-BREAK programme on children’s academic achievement. Secondary aims are to explore the impact of ACTI-BREAK on children’s on-task behaviour and objectively measured physical activity levels.

Methods

ACTI-BREAK is a 6-week, classroom-based, physical activity intervention. This pilot trial of the programme will be evaluated using a cluster randomised controlled design. Government primary schools in metropolitan Melbourne, Australia will be invited to participate in the programme in 2017. Randomisation will occur at the school level, with the aim to recruit six schools (three intervention and three control). The ACTI-BREAK programme is theoretically grounded, and was developed with input and guidance from current primary school teachers. Teachers from the intervention schools will receive a 45-min training session and be asked to incorporate ACTI-BREAKS into their classroom routine three times per day for 6 weeks. Intervention support will be provided via assisted delivery. The primary outcomes will be children’s academic achievement in mathematics and reading. Children’s on-task behaviour and school-day physical activity will be assessed as secondary outcomes. Process evaluation will also be carried out.

Discussion

The ACTI-BREAK programme has been designed to be a time-efficient, feasible and appealing approach to physical activity promotion for schools. This study will assess required teacher time commitment and the potential for the ACTI-BREAK programme to improve academic-related outcomes and school-day physical activity levels with the potential for a full-scale trial in the future.

Trial registration

Australia New Zealand Clinical Trials Registry, identifier ACTRN12617000602​325. Retrospectively registered on 27 April 2017.
Appendix
Available only for authorised users
Literature
1.
go back to reference Okely T, Salmon J, Vella S, Cliff D, Timperio A, Tremblay M, Trost S, Shilton T, Hinkley T, Ridgers N, Phillipson L, Hesketh K, Parrish A, Janssen X, Brown M, Emmel J, Marino N. A systematic review to update the Australian physical activity guidelines for children and young people. In: Report prepared for the Australian Government Department of Health. Canberra: Commonwealth of Australia; 2012. Okely T, Salmon J, Vella S, Cliff D, Timperio A, Tremblay M, Trost S, Shilton T, Hinkley T, Ridgers N, Phillipson L, Hesketh K, Parrish A, Janssen X, Brown M, Emmel J, Marino N. A systematic review to update the Australian physical activity guidelines for children and young people. In: Report prepared for the Australian Government Department of Health. Canberra: Commonwealth of Australia; 2012.
2.
go back to reference Fedewa AL, Ahn S. The effects of physical activity and physical fitness on children’s achievement and cognitive outcomes: a meta-analysis. Res Q Exerc Sport. 2011;82(3):521–35.CrossRefPubMed Fedewa AL, Ahn S. The effects of physical activity and physical fitness on children’s achievement and cognitive outcomes: a meta-analysis. Res Q Exerc Sport. 2011;82(3):521–35.CrossRefPubMed
3.
go back to reference Sibley BA, Etnier JL. The relationship between physical activity and cognition in children: a meta-analysis. Pediatr Exerc Sci. 2003;15:243–56.CrossRef Sibley BA, Etnier JL. The relationship between physical activity and cognition in children: a meta-analysis. Pediatr Exerc Sci. 2003;15:243–56.CrossRef
4.
go back to reference Erwin H, Fedewa A, Beighle A, Ahn S. A quantitative review of physical activity, health, and learning outcomes associated with classroom-based physical activity interventions. J Appl Sch Psychol. 2012;28(1):14–36.CrossRef Erwin H, Fedewa A, Beighle A, Ahn S. A quantitative review of physical activity, health, and learning outcomes associated with classroom-based physical activity interventions. J Appl Sch Psychol. 2012;28(1):14–36.CrossRef
7.
go back to reference Griffiths LJ, Cortina-Borja M, Sera F, Pouliou T, Geraci M, Rich C, Cole TJ, Law C, Joshi H, Ness AR, Jebb SA, Dezateux C. How active are our children? Findings from the Millennium Cohort Study. BMJ Open. 2013;3(8):e002893.CrossRefPubMedPubMedCentral Griffiths LJ, Cortina-Borja M, Sera F, Pouliou T, Geraci M, Rich C, Cole TJ, Law C, Joshi H, Ness AR, Jebb SA, Dezateux C. How active are our children? Findings from the Millennium Cohort Study. BMJ Open. 2013;3(8):e002893.CrossRefPubMedPubMedCentral
8.
go back to reference Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.CrossRefPubMed Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.CrossRefPubMed
9.
go back to reference Hotting K, Roder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013;37(9 Pt B):2243–57.CrossRefPubMed Hotting K, Roder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013;37(9 Pt B):2243–57.CrossRefPubMed
10.
go back to reference Webster CA, Russ L, Vazou S, Goh TL, Erwin H. Integrating movement in academic classrooms: understanding, applying and advancing the knowledge base. Obes Rev. 2015;16(8):691–701.CrossRefPubMed Webster CA, Russ L, Vazou S, Goh TL, Erwin H. Integrating movement in academic classrooms: understanding, applying and advancing the knowledge base. Obes Rev. 2015;16(8):691–701.CrossRefPubMed
11.
go back to reference McMullen J, Kulinna P, Cothran D. Physical activity opportunities during the school day: classroom teachers’ perceptions of using activity breaks in the classroom. J Teach Phys Educ. 2014;33(4):511–27.CrossRef McMullen J, Kulinna P, Cothran D. Physical activity opportunities during the school day: classroom teachers’ perceptions of using activity breaks in the classroom. J Teach Phys Educ. 2014;33(4):511–27.CrossRef
12.
13.
go back to reference Norris E, Shelton N, Dunsmuir S, Duke-Williams O, Stamatakis E. Physically active lessons as physical activity and educational interventions: a systematic review of methods and results. Prev Med. 2015;72:116–25.CrossRefPubMed Norris E, Shelton N, Dunsmuir S, Duke-Williams O, Stamatakis E. Physically active lessons as physical activity and educational interventions: a systematic review of methods and results. Prev Med. 2015;72:116–25.CrossRefPubMed
14.
go back to reference Ma JK, Le Mare L, Gurd BJ. Classroom-based high-intensity interval activity improves off-task behaviour in primary school students. Appl Physiol Nutr Metab. 2014;39(12):1332–7.CrossRefPubMed Ma JK, Le Mare L, Gurd BJ. Classroom-based high-intensity interval activity improves off-task behaviour in primary school students. Appl Physiol Nutr Metab. 2014;39(12):1332–7.CrossRefPubMed
15.
go back to reference Howie EK, Beets MW, Pate RR. Acute classroom exercise breaks improve on-task behavior in 4th and 5th grade students: A dose-response. Ment Health and Phys Act. 2014;7(2):65–71.CrossRef Howie EK, Beets MW, Pate RR. Acute classroom exercise breaks improve on-task behavior in 4th and 5th grade students: A dose-response. Ment Health and Phys Act. 2014;7(2):65–71.CrossRef
16.
go back to reference Howie EK, Schatz J, Pate RR. Acute effects of classroom exercise breaks on executive function and math performance: a dose-response study. Res Q Exerc Sport. 2015;86(3):217–24.CrossRefPubMed Howie EK, Schatz J, Pate RR. Acute effects of classroom exercise breaks on executive function and math performance: a dose-response study. Res Q Exerc Sport. 2015;86(3):217–24.CrossRefPubMed
17.
go back to reference Uhrich TA, Swalm RL. A pilot study of a possible effect from a motor task on reading performance. Percept Mot Skills. 2007;104(3 Pt 1):1035–41.CrossRefPubMed Uhrich TA, Swalm RL. A pilot study of a possible effect from a motor task on reading performance. Percept Mot Skills. 2007;104(3 Pt 1):1035–41.CrossRefPubMed
18.
go back to reference Carlson JA, Engelberg JK, Cain KL, Conway TL, Mignano AM, Bonilla EA, Geremia C, Sallis JF. Implementing classroom physical activity breaks: associations with student physical activity and classroom behavior. Prev Med. 2015;81:67–72.CrossRefPubMed Carlson JA, Engelberg JK, Cain KL, Conway TL, Mignano AM, Bonilla EA, Geremia C, Sallis JF. Implementing classroom physical activity breaks: associations with student physical activity and classroom behavior. Prev Med. 2015;81:67–72.CrossRefPubMed
19.
go back to reference Whitt-Glover MC, Ham SA, Yancey AK. Instant Recess(R): a practical tool for increasing physical activity during the school day. Prog Community Health Partnersh. 2011;5(3):289–97.CrossRefPubMed Whitt-Glover MC, Ham SA, Yancey AK. Instant Recess(R): a practical tool for increasing physical activity during the school day. Prog Community Health Partnersh. 2011;5(3):289–97.CrossRefPubMed
20.
go back to reference Ma JK, Le Mare L, Gurd BJ. Four minutes of in-class high-intensity interval activity improves selective attention in 9- to 11-year olds. Appl Physiol Nutr Metab. 2015;40(3):238–44.CrossRefPubMed Ma JK, Le Mare L, Gurd BJ. Four minutes of in-class high-intensity interval activity improves selective attention in 9- to 11-year olds. Appl Physiol Nutr Metab. 2015;40(3):238–44.CrossRefPubMed
21.
go back to reference Janssen M, Chinapaw MJM, Rauh SP, Toussaint HM, van Mechelen W, Verhagen EALM. A short physical activity break from cognitive tasks increases selective attention in primary school children aged 10–11. Ment Health and Phys Act. 2014;7(3):129–34.CrossRef Janssen M, Chinapaw MJM, Rauh SP, Toussaint HM, van Mechelen W, Verhagen EALM. A short physical activity break from cognitive tasks increases selective attention in primary school children aged 10–11. Ment Health and Phys Act. 2014;7(3):129–34.CrossRef
22.
go back to reference Webster CA, Caputi P, Perreault M, Doan R, Doutis Panayiotis P, Weaver RG. Elementary classroom teachers’ adoption of physical activity promotion in the context of a statewide policy: an innovation diffusion and socio-ecologic perspective. J Teach Phys Educ. 2013;32(4):419–40.CrossRef Webster CA, Caputi P, Perreault M, Doan R, Doutis Panayiotis P, Weaver RG. Elementary classroom teachers’ adoption of physical activity promotion in the context of a statewide policy: an innovation diffusion and socio-ecologic perspective. J Teach Phys Educ. 2013;32(4):419–40.CrossRef
23.
go back to reference Riley N, Lubans DR, Morgan PJ, Young M. Outcomes and process evaluation of a programme integrating physical activity into the primary school mathematics curriculum: The EASY Minds pilot randomised controlled trial. J Sci Med Sport. 2015;18(6):656–61.CrossRefPubMed Riley N, Lubans DR, Morgan PJ, Young M. Outcomes and process evaluation of a programme integrating physical activity into the primary school mathematics curriculum: The EASY Minds pilot randomised controlled trial. J Sci Med Sport. 2015;18(6):656–61.CrossRefPubMed
24.
go back to reference Hill L, Williams JHG, Aucott L, Milne J, Thomson J, Greig J, Munro V, Mon-Williams M. Exercising attention within the classroom. Dev Med Child Neurol. 2010;52(10):929–34.CrossRefPubMed Hill L, Williams JHG, Aucott L, Milne J, Thomson J, Greig J, Munro V, Mon-Williams M. Exercising attention within the classroom. Dev Med Child Neurol. 2010;52(10):929–34.CrossRefPubMed
25.
go back to reference Hill LJ, Williams JH, Aucott L, Thomson J, Mon-Williams M. How does exercise benefit performance on cognitive tests in primary-school pupils? Dev Med Child Neurol. 2011;53(7):630–5.CrossRefPubMed Hill LJ, Williams JH, Aucott L, Thomson J, Mon-Williams M. How does exercise benefit performance on cognitive tests in primary-school pupils? Dev Med Child Neurol. 2011;53(7):630–5.CrossRefPubMed
26.
go back to reference Wilson AN, Olds T, Lushington K, Petkov J, Dollman J. The impact of 10-min activity breaks outside the classroom on male students' on-task behaviour and sustained attention: a randomised crossover design. Acta Paediatr. 2015;105(4):e181–8. Wilson AN, Olds T, Lushington K, Petkov J, Dollman J. The impact of 10-min activity breaks outside the classroom on male students' on-task behaviour and sustained attention: a randomised crossover design. Acta Paediatr. 2015;105(4):e181–8.
27.
go back to reference Howie EK, Newman-Norlund RD, Pate RR. Smiles count but minutes matter: responses to classroom exercise breaks. Am J Health Behav. 2014;38(5):681–9.CrossRefPubMed Howie EK, Newman-Norlund RD, Pate RR. Smiles count but minutes matter: responses to classroom exercise breaks. Am J Health Behav. 2014;38(5):681–9.CrossRefPubMed
28.
go back to reference Altenburg TM, Chinapaw MJM, Singh AS. Effects of one versus two bouts of moderate intensity physical activity on selective attention during a school morning in Dutch primary schoolchildren: a randomized controlled trial. J Sci Med Sport. 2016;19(10):820–4.CrossRefPubMed Altenburg TM, Chinapaw MJM, Singh AS. Effects of one versus two bouts of moderate intensity physical activity on selective attention during a school morning in Dutch primary schoolchildren: a randomized controlled trial. J Sci Med Sport. 2016;19(10):820–4.CrossRefPubMed
29.
go back to reference Ahamed Y, MacDonald H, Reed K, Naylor P-J, Liu-Ambrose T, McKay H. School-based physical activity does not compromise children’s academic performance. Med Sci Sports Exerc. 2007;39(2):371–6.CrossRefPubMed Ahamed Y, MacDonald H, Reed K, Naylor P-J, Liu-Ambrose T, McKay H. School-based physical activity does not compromise children’s academic performance. Med Sci Sports Exerc. 2007;39(2):371–6.CrossRefPubMed
30.
go back to reference Katz DL, Cushman D, Reynolds J, Njike V, Treu JA, Walker J, Smith E, Katz C. Putting physical activity where it fits in the school day: preliminary results of the ABC (Activity Bursts in the Classroom) for fitness program. Prev Chronic Dis. 2010;7(4):A82.PubMedPubMedCentral Katz DL, Cushman D, Reynolds J, Njike V, Treu JA, Walker J, Smith E, Katz C. Putting physical activity where it fits in the school day: preliminary results of the ABC (Activity Bursts in the Classroom) for fitness program. Prev Chronic Dis. 2010;7(4):A82.PubMedPubMedCentral
31.
go back to reference Lisahunter R, Abbott D, Ziviani MJ, Cuskelly M. Active kids active minds: a physical activity intervention to promote learning? Asia Pac J Health Sport Phys Educ. 2014;5(2):117–31.CrossRef Lisahunter R, Abbott D, Ziviani MJ, Cuskelly M. Active kids active minds: a physical activity intervention to promote learning? Asia Pac J Health Sport Phys Educ. 2014;5(2):117–31.CrossRef
32.
go back to reference Bricker D, Yovanoff P, Capt B, Allen D. Use of a Curriculum-Based Measure To Corroborate Eligibility Decisions. J Early Intervention. 2003;26(1):20–30.CrossRef Bricker D, Yovanoff P, Capt B, Allen D. Use of a Curriculum-Based Measure To Corroborate Eligibility Decisions. J Early Intervention. 2003;26(1):20–30.CrossRef
33.
go back to reference Barnard M, Van Deventer KJ, Oswald MM. The role of active teaching programmes in academic skills enhancement of grade 2 learners in the Stellenbosch Region. S Afr J Res Sport Phys Educ Recreation. 2014;36(3):1–14. Barnard M, Van Deventer KJ, Oswald MM. The role of active teaching programmes in academic skills enhancement of grade 2 learners in the Stellenbosch Region. S Afr J Res Sport Phys Educ Recreation. 2014;36(3):1–14.
34.
go back to reference Deno S. The nature and development of curriculum-based measurement. Prev Sch Fail. 1992;36(2):5.CrossRef Deno S. The nature and development of curriculum-based measurement. Prev Sch Fail. 1992;36(2):5.CrossRef
35.
go back to reference Deno SL. Curriculum-based measures: development and perspectives. Assess Eff Interv. 2003;28(3-4):3–12.CrossRef Deno SL. Curriculum-based measures: development and perspectives. Assess Eff Interv. 2003;28(3-4):3–12.CrossRef
37.
go back to reference Wheldall K, Madelaine A. Manual for the Wheldall assessment of reading passages (WARP). Sydney: Multilit Pty Ltd; 2013. Wheldall K, Madelaine A. Manual for the Wheldall assessment of reading passages (WARP). Sydney: Multilit Pty Ltd; 2013.
38.
go back to reference Carson V, Salmon J, Arundell L, Ridgers ND, Cerin E, Brown H, Hesketh KD, Ball K, Chinapaw M, Yildirim M, Daly RM, Dunstan DW, Crawford D. Examination of mid-intervention mediating effects on objectively assessed sedentary time among children in the Transform-Us! cluster-randomized controlled trial. Int J Behav Nutr Phys Act. 2013;10:62.CrossRefPubMedPubMedCentral Carson V, Salmon J, Arundell L, Ridgers ND, Cerin E, Brown H, Hesketh KD, Ball K, Chinapaw M, Yildirim M, Daly RM, Dunstan DW, Crawford D. Examination of mid-intervention mediating effects on objectively assessed sedentary time among children in the Transform-Us! cluster-randomized controlled trial. Int J Behav Nutr Phys Act. 2013;10:62.CrossRefPubMedPubMedCentral
41.
go back to reference Roberts C, Torgerson DJ. Baseline imbalance in randomised controlled trials. Br Med J. 1999;319(7203):185.CrossRef Roberts C, Torgerson DJ. Baseline imbalance in randomised controlled trials. Br Med J. 1999;319(7203):185.CrossRef
42.
go back to reference Michie S, Atkins L, West R. The behaviour change wheel: a guide to designing interventions. London: Silverback Publishing; 2014. Michie S, Atkins L, West R. The behaviour change wheel: a guide to designing interventions. London: Silverback Publishing; 2014.
43.
go back to reference Bandura A. Social foundations of thought and action : a social cognitive theory. Prentice-Hall series in social learning theory. Englewood Cliffs: Prentice-Hall; 1986. p. c1986. Bandura A. Social foundations of thought and action : a social cognitive theory. Prentice-Hall series in social learning theory. Englewood Cliffs: Prentice-Hall; 1986. p. c1986.
47.
go back to reference Maher MT, Kenny RK, Shields AT, Scales DP, Collins G. Energizers: classroom-based physical activities. Raleigh: North Carolina Department of Public Instruction; 2006. Maher MT, Kenny RK, Shields AT, Scales DP, Collins G. Energizers: classroom-based physical activities. Raleigh: North Carolina Department of Public Instruction; 2006.
48.
go back to reference Reschly AL, Busch TW, Betts J, Deno SL, Long JD. Curriculum-based measurement oral reading as an indicator of reading achievement: a meta-analysis of the correlational evidence. J Sch Psychol. 2009;47(6):427–69.CrossRefPubMed Reschly AL, Busch TW, Betts J, Deno SL, Long JD. Curriculum-based measurement oral reading as an indicator of reading achievement: a meta-analysis of the correlational evidence. J Sch Psychol. 2009;47(6):427–69.CrossRefPubMed
49.
go back to reference Wheldall K, Madelaine A. The development of a passage reading test for the frequent monitoring of performance of low-progress readers. Australasian J Spec Educ. 2006;30(1):72.CrossRef Wheldall K, Madelaine A. The development of a passage reading test for the frequent monitoring of performance of low-progress readers. Australasian J Spec Educ. 2006;30(1):72.CrossRef
50.
go back to reference Westwood PS. One Minute Test of Basic Number Facts. In: Numeracy and learning difficulties: approaches to teaching and assessment. Camberwell: ACER Press; 2000. p. 108. Westwood PS. One Minute Test of Basic Number Facts. In: Numeracy and learning difficulties: approaches to teaching and assessment. Camberwell: ACER Press; 2000. p. 108.
51.
go back to reference Chafouleas SM, Kilgus SP, Jaffery R, Riley-Tillman TC, Welsh M, Christ TJ. Direct behavior rating as a school-based behavior screener for elementary and middle grades. J Sch Psychol. 2013;51:367–85.CrossRefPubMed Chafouleas SM, Kilgus SP, Jaffery R, Riley-Tillman TC, Welsh M, Christ TJ. Direct behavior rating as a school-based behavior screener for elementary and middle grades. J Sch Psychol. 2013;51:367–85.CrossRefPubMed
52.
go back to reference Riley-Tillman TC, Chafouleas SM, Sassu KA, Chanese JAM, Glazer AD. Examining the agreement of direct behavior ratings and systematic direct observation data for on-task and disruptive behavior. J Posit Behav Interv. 2008;10(2):136–43.CrossRef Riley-Tillman TC, Chafouleas SM, Sassu KA, Chanese JAM, Glazer AD. Examining the agreement of direct behavior ratings and systematic direct observation data for on-task and disruptive behavior. J Posit Behav Interv. 2008;10(2):136–43.CrossRef
53.
go back to reference Lee SW, Shaftel J, Neaderhiser J, Oeth J. Development and Validation of Instruments to Assess the Behavior and Assets of Students at the Classroom Level. in American Psychological Association Convention Presentation. Toronto: American Psychological Association (APA); 2009. Lee SW, Shaftel J, Neaderhiser J, Oeth J. Development and Validation of Instruments to Assess the Behavior and Assets of Students at the Classroom Level. in American Psychological Association Convention Presentation. Toronto: American Psychological Association (APA); 2009.
54.
go back to reference Rowlands AV. Accelerometer assessment of physical activity in children: an update. Pediatr Exerc Sci. 2007;19(3):252–66.CrossRefPubMed Rowlands AV. Accelerometer assessment of physical activity in children: an update. Pediatr Exerc Sci. 2007;19(3):252–66.CrossRefPubMed
55.
go back to reference Trost SG, Ward DS, Moorehead SM, Watson PD, Riner W, Burke JR. Validity of the computer science and applications (CSA) activity monitor in children. Med Sci Sports Exerc. 1998;30(4):629–33.CrossRefPubMed Trost SG, Ward DS, Moorehead SM, Watson PD, Riner W, Burke JR. Validity of the computer science and applications (CSA) activity monitor in children. Med Sci Sports Exerc. 1998;30(4):629–33.CrossRefPubMed
56.
go back to reference Freedson P, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005;37(11 Suppl):S523–30.CrossRefPubMed Freedson P, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005;37(11 Suppl):S523–30.CrossRefPubMed
57.
go back to reference Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):1360–8.CrossRefPubMed Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):1360–8.CrossRefPubMed
58.
go back to reference Bailey RC, Olson J, Pepper SL, Porszasz J, Barstow TJ, Cooper DM. The level and tempo of children's physical activities: an observational study. Med Sci Sports Exerc. 1995;27(7):1033–41.CrossRefPubMed Bailey RC, Olson J, Pepper SL, Porszasz J, Barstow TJ, Cooper DM. The level and tempo of children's physical activities: an observational study. Med Sci Sports Exerc. 1995;27(7):1033–41.CrossRefPubMed
59.
go back to reference Cain KL, Sallis JF, Conway TL, Van Dyck D, Calhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10(3):437–50.CrossRefPubMed Cain KL, Sallis JF, Conway TL, Van Dyck D, Calhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10(3):437–50.CrossRefPubMed
60.
go back to reference Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol. 2006;3(2):77–101.CrossRef Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol. 2006;3(2):77–101.CrossRef
61.
go back to reference Gately P, Curtis C, Hardaker R. An evaluation in UK schools of a classroom-based physical activity programme—TAKE 10! ®: a qualitative analysis of the teachers’ perspective. Educ Health. 2013;31(4):72–8. Gately P, Curtis C, Hardaker R. An evaluation in UK schools of a classroom-based physical activity programme—TAKE 10! ®: a qualitative analysis of the teachers’ perspective. Educ Health. 2013;31(4):72–8.
62.
go back to reference Madelaine A, Wheldall K. Towards a curriculum‐based passage reading test for monitoring the performance of low‐progress readers using standardised passages: a validity study. Educ Psychol. 1998;18(4):471–8.CrossRef Madelaine A, Wheldall K. Towards a curriculum‐based passage reading test for monitoring the performance of low‐progress readers using standardised passages: a validity study. Educ Psychol. 1998;18(4):471–8.CrossRef
63.
go back to reference Madelaine A, Wheldall K. Further progress towards a standardised curriculum-based measure of reading: calibrating a new passage reading test against the New South Wales Basic Skills Test. Educ Psychol. 2002;22(4):461–71.CrossRef Madelaine A, Wheldall K. Further progress towards a standardised curriculum-based measure of reading: calibrating a new passage reading test against the New South Wales Basic Skills Test. Educ Psychol. 2002;22(4):461–71.CrossRef
Metadata
Title
A primary school active break programme (ACTI-BREAK): study protocol for a pilot cluster randomised controlled trial
Authors
Amanda Watson
Anna Timperio
Helen Brown
Kylie D. Hesketh
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Trials / Issue 1/2017
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-017-2163-5

Other articles of this Issue 1/2017

Trials 1/2017 Go to the issue