Skip to main content
Top
Published in: Breast Cancer Research 1/2020

01-12-2020 | Breast Cancer | Research article

Activating transcription factor-2 (ATF2) is a key determinant of resistance to endocrine treatment in an in vitro model of breast cancer

Authors: Athina Giannoudis, Mohammed Imad Malki, Bharath Rudraraju, Hisham Mohhamed, Suraj Menon, Triantafillos Liloglou, Simak Ali, Jason S. Carroll, Carlo Palmieri

Published in: Breast Cancer Research | Issue 1/2020

Login to get access

Abstract

Background

Activating transcription factor-2 (ATF2), a member of the leucine zipper family of DNA binding proteins, has been implicated as a tumour suppressor in breast cancer. However, its exact role in breast cancer endocrine resistance is still unclear. We have previously shown that silencing of ATF2 leads to a loss in the growth-inhibitory effects of tamoxifen in the oestrogen receptor (ER)-positive, tamoxifen-sensitive MCF7 cell line and highlighted that this multi-faceted transcription factor is key to the effects of tamoxifen in an endocrine sensitive model. In this work, we explored further the in vitro role of ATF2 in defining the resistance to endocrine treatment.

Materials and methods

We knocked down ATF2 in TAMR, LCC2 and LCC9 tamoxifen-resistant breast cancer cell lines as well as the parental tamoxifen sensitive MCF7 cell line and investigated the effects on growth, colony formation and cell migration. We also performed a microarray gene expression profiling (Illumina Human HT12_v4) to explore alterations in gene expression between MCF7 and TAMRs after ATF2 silencing and confirmed gene expression changes by quantitative RT-PCR.

Results

By silencing ATF2, we observed a significant growth reduction of TAMR, LCC2 and LCC9 with no such effect observed with the parental MCF7 cells. ATF2 silencing was also associated with a significant inhibition of TAMR, LCC2 and LCC9 cell migration and colony formation. Interestingly, knockdown of ATF2 enhanced the levels of ER and ER-regulated genes, TFF1, GREB1, NCOA3 and PGR, in TAMR cells both at RNA and protein levels. Microarray gene expression identified a number of genes known to mediate tamoxifen resistance, to be differentially regulated by ATF2 in TAMR in relation to the parental MCF7 cells. Moreover, differential pathway analysis confirmed enhanced ER activity after ATF2 knockdown in TAMR cells.

Conclusion

These data demonstrate that ATF2 silencing may overcome endocrine resistance and highlights further the dual role of this transcription factor that can mediate endocrine sensitivity and resistance by modulating ER expression and activity.
Appendix
Available only for authorised users
Literature
2.
go back to reference Ali S, Coombes RC. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer. 2002;2:101–12.PubMedCrossRef Ali S, Coombes RC. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer. 2002;2:101–12.PubMedCrossRef
4.
go back to reference Ignatov A, Ignatov T, Roessner A, Costa SD, Kalinski T. Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells. Br Cancer Res Treat. 2010;123:87–96.CrossRef Ignatov A, Ignatov T, Roessner A, Costa SD, Kalinski T. Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells. Br Cancer Res Treat. 2010;123:87–96.CrossRef
5.
go back to reference Hayes EL, Lewis-Wambi JS. Mechanisms of endocrine resistance in breast cancer: an overview of the proposed roles of noncoding RNA. Br Cancer Res. 2015;17:40.CrossRef Hayes EL, Lewis-Wambi JS. Mechanisms of endocrine resistance in breast cancer: an overview of the proposed roles of noncoding RNA. Br Cancer Res. 2015;17:40.CrossRef
6.
go back to reference Lin X, Li J, Yin G, et al. Integrative analyses of gene expression and DNA methylation profiles in breast cancer cell line models of tamoxifen-resistance indicate a potential role of cells with stem-like properties. Breast Cancer Res. 2013;15:R119. https://doi.org/10.1186/bcr3588. Lin X, Li J, Yin G, et al. Integrative analyses of gene expression and DNA methylation profiles in breast cancer cell line models of tamoxifen-resistance indicate a potential role of cells with stem-like properties. Breast Cancer Res. 2013;15:R119. https://​doi.​org/​10.​1186/​bcr3588.
7.
go back to reference Jahangiri R, Mosaffa F, Razavi AE, Teimoori-Toolabi L, Jamialahmadi K. Altered DNA methyltransferases promoter methylation and mRNA expression are associated with tamoxifen response in breast tumors. J Cell Physiol. 2018;233:7305–19.PubMedCrossRef Jahangiri R, Mosaffa F, Razavi AE, Teimoori-Toolabi L, Jamialahmadi K. Altered DNA methyltransferases promoter methylation and mRNA expression are associated with tamoxifen response in breast tumors. J Cell Physiol. 2018;233:7305–19.PubMedCrossRef
8.
go back to reference Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet. 2013;45:1439–45.PubMedPubMedCentralCrossRef Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet. 2013;45:1439–45.PubMedPubMedCentralCrossRef
9.
go back to reference Martin L-A, Ribas R, Simigdala N, Schuster E, Pancholi S, Tenev T, et al. Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance. Nat Commun. 2017;8:1865.PubMedPubMedCentralCrossRef Martin L-A, Ribas R, Simigdala N, Schuster E, Pancholi S, Tenev T, et al. Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance. Nat Commun. 2017;8:1865.PubMedPubMedCentralCrossRef
10.
go back to reference Zaal EA, Berkers CR. The influence of metabolism on drug response in cancer. Front Oncol. 2018;8:1–15.CrossRef Zaal EA, Berkers CR. The influence of metabolism on drug response in cancer. Front Oncol. 2018;8:1–15.CrossRef
11.
go back to reference Huber-Keener KJ, Liu X, Wang Z, Wang Y, Freeman W, Wu S, et al. Differential gene expression in tamoxifen-resistant breast cancer cells revealed by a new analytical model of RNA-Seq data. PLoS One. 2012;7:e41333.PubMedPubMedCentralCrossRef Huber-Keener KJ, Liu X, Wang Z, Wang Y, Freeman W, Wu S, et al. Differential gene expression in tamoxifen-resistant breast cancer cells revealed by a new analytical model of RNA-Seq data. PLoS One. 2012;7:e41333.PubMedPubMedCentralCrossRef
12.
go back to reference Zhou C, Zhong Q, Rhodes LV, Townley I, Bratton MR, Zhang Q, et al. Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration. Br Cancer Res. 2012;14:R45.CrossRef Zhou C, Zhong Q, Rhodes LV, Townley I, Bratton MR, Zhang Q, et al. Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration. Br Cancer Res. 2012;14:R45.CrossRef
13.
go back to reference D’Amato NC, Gordon MA, Babbs B, Spoelstra NS, Carson Butterfield KT, Torkko KC, et al. Cooperative dynamics of AR and ER activity in breast cancer. Mol Cancer Res. 2016;14:1054–67.PubMedPubMedCentralCrossRef D’Amato NC, Gordon MA, Babbs B, Spoelstra NS, Carson Butterfield KT, Torkko KC, et al. Cooperative dynamics of AR and ER activity in breast cancer. Mol Cancer Res. 2016;14:1054–67.PubMedPubMedCentralCrossRef
15.
go back to reference Watson G, Ronai Z, Lau E. ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease. Pharmacol Res. 2017;119:347–57.PubMedPubMedCentralCrossRef Watson G, Ronai Z, Lau E. ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease. Pharmacol Res. 2017;119:347–57.PubMedPubMedCentralCrossRef
16.
go back to reference Kawasaki H, Schiltz L, Chiu R, Itakura K, Taira K, Nakatani Y, Yokoyama KK. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature. 2000;405:195–200.PubMedCrossRef Kawasaki H, Schiltz L, Chiu R, Itakura K, Taira K, Nakatani Y, Yokoyama KK. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature. 2000;405:195–200.PubMedCrossRef
17.
go back to reference Tsuchimochi K, Otero M, Dragomir CL, Plumb DA, Zerbini LF, Libermann TA, et al. GADD45β enhances Col10a1 transcription via the MTK1/MKK3/6/p38 axis and activation of C/EBPβ-TAD4 in terminally differentiating chondrocytes. J Biol Chem. 2010;285:8395–407.PubMedPubMedCentralCrossRef Tsuchimochi K, Otero M, Dragomir CL, Plumb DA, Zerbini LF, Libermann TA, et al. GADD45β enhances Col10a1 transcription via the MTK1/MKK3/6/p38 axis and activation of C/EBPβ-TAD4 in terminally differentiating chondrocytes. J Biol Chem. 2010;285:8395–407.PubMedPubMedCentralCrossRef
18.
go back to reference Nannuru KC, Futakuchi M, Varney ML, Vincent TM, Marcusson EG, Singh RK. Matrix metalloproteinase (MMP)-13 regulates mammary tumor-induced osteolysis by activating MMP9 and transforming growth factor-beta signaling at the tumor-bone interface. Cancer Res. 2010;70:3494–504.PubMedPubMedCentralCrossRef Nannuru KC, Futakuchi M, Varney ML, Vincent TM, Marcusson EG, Singh RK. Matrix metalloproteinase (MMP)-13 regulates mammary tumor-induced osteolysis by activating MMP9 and transforming growth factor-beta signaling at the tumor-bone interface. Cancer Res. 2010;70:3494–504.PubMedPubMedCentralCrossRef
19.
go back to reference Van Dam H, Castellazzi M. Distinct roles of Jun:Fos and Jun:ATF dimers in oncogenesis. Oncogene. 2001;20:2453–64.PubMedCrossRef Van Dam H, Castellazzi M. Distinct roles of Jun:Fos and Jun:ATF dimers in oncogenesis. Oncogene. 2001;20:2453–64.PubMedCrossRef
20.
go back to reference Deb S, Zhou J, Amin SA, Imir AG, Yilmaz MB, Lin Z, Bulun SE. A novel role of sodium butyrate in the regulation of cancer-associated aromatase promoters I.3 and II by disrupting a transcriptional complex in breast adipose fibroblasts. J Biol Chem. 2006;281:2585–97.PubMedCrossRef Deb S, Zhou J, Amin SA, Imir AG, Yilmaz MB, Lin Z, Bulun SE. A novel role of sodium butyrate in the regulation of cancer-associated aromatase promoters I.3 and II by disrupting a transcriptional complex in breast adipose fibroblasts. J Biol Chem. 2006;281:2585–97.PubMedCrossRef
21.
go back to reference Song H, Ki SH, Kim SG, Moon A. Activating transcription factor 2 mediates matrix metalloproteinase-2 transcriptional activation induced by p38 in breast epithelial cells. Cancer Res. 2006;66:10487–96.PubMedCrossRef Song H, Ki SH, Kim SG, Moon A. Activating transcription factor 2 mediates matrix metalloproteinase-2 transcriptional activation induced by p38 in breast epithelial cells. Cancer Res. 2006;66:10487–96.PubMedCrossRef
22.
go back to reference Subbaramaiah K, Norton L, Gerald W, Dannenberg AJ. Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer: evidence for involvement of AP-1 and PEA3. J Biol Chem. 2002;277:18649–57.PubMedCrossRef Subbaramaiah K, Norton L, Gerald W, Dannenberg AJ. Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer: evidence for involvement of AP-1 and PEA3. J Biol Chem. 2002;277:18649–57.PubMedCrossRef
23.
go back to reference Richard JL, Albanese C, Stenger RJ, Watanabe G, Inghirami G, Haines GK, et al. pp60v-src induction of cyclin D1 requires collaborative interactions between the extracellular signal-regulated kinase, p38, and Jun kinase pathways. J Biol Chem. 1999;274:7341–50.CrossRef Richard JL, Albanese C, Stenger RJ, Watanabe G, Inghirami G, Haines GK, et al. pp60v-src induction of cyclin D1 requires collaborative interactions between the extracellular signal-regulated kinase, p38, and Jun kinase pathways. J Biol Chem. 1999;274:7341–50.CrossRef
24.
go back to reference Lewis JS, Vijayanathan V, Thomas TJ, Pestell RG, Albanese C, Gallo MA, Thomas T. Activation of cyclin D1 by estradiol and spermine in MCF-7 breast cancer cells: a mechanism involving the p38 MAP kinase and phosphorylation of ATF-2. Oncol Res. 2005;15:113–2.PubMedCrossRef Lewis JS, Vijayanathan V, Thomas TJ, Pestell RG, Albanese C, Gallo MA, Thomas T. Activation of cyclin D1 by estradiol and spermine in MCF-7 breast cancer cells: a mechanism involving the p38 MAP kinase and phosphorylation of ATF-2. Oncol Res. 2005;15:113–2.PubMedCrossRef
25.
go back to reference Rudraraju B, Droog M, Abdel-Fatah TM, Zwart W, Giannoudis A, Malki MI, et al. Phosphorylation of activating transcription factor-2 (ATF2) within the activation domain is a key determinant of sensitivity to tamoxifen in breast cancer. Br Cancer Res Treat. 2014;147:295–309.CrossRef Rudraraju B, Droog M, Abdel-Fatah TM, Zwart W, Giannoudis A, Malki MI, et al. Phosphorylation of activating transcription factor-2 (ATF2) within the activation domain is a key determinant of sensitivity to tamoxifen in breast cancer. Br Cancer Res Treat. 2014;147:295–309.CrossRef
26.
go back to reference Bhoumik A, Fichtman B, Derossi C, Breitwieser W, Kluger HM, Davis S, et al. Suppressor role of activating transcription factor 2 (ATF2) in skin cancer. Proc Natl Acad Sci U S A. 2008;105:1674–9.PubMedPubMedCentralCrossRef Bhoumik A, Fichtman B, Derossi C, Breitwieser W, Kluger HM, Davis S, et al. Suppressor role of activating transcription factor 2 (ATF2) in skin cancer. Proc Natl Acad Sci U S A. 2008;105:1674–9.PubMedPubMedCentralCrossRef
27.
go back to reference Berger AJ, Kluger HM, Li N, Kielhorn E, Halaban R, Ronai Z, Rimm DL. Subcellular localization of activating transcription factor 2 in melanoma specimens predicts patient survival. Cancer Res. 2003;63:8103–7.PubMed Berger AJ, Kluger HM, Li N, Kielhorn E, Halaban R, Ronai Z, Rimm DL. Subcellular localization of activating transcription factor 2 in melanoma specimens predicts patient survival. Cancer Res. 2003;63:8103–7.PubMed
28.
go back to reference Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, et al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF7 cells. Endocrinology. 2003;144:1032–44.PubMedCrossRef Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, et al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF7 cells. Endocrinology. 2003;144:1032–44.PubMedCrossRef
29.
go back to reference Brünner N, Frandsen TL, Holst-Hansen C, Bei M, Thompson EW, Wakeling AE, et al. MCF7/LCC2: a 4-hydroxytamoxifen resistant human breast cancer variant that retains sensitivity to the steroidal antiestrogen ICI 182,780. Cancer Res. 1993;53:3229–32.PubMed Brünner N, Frandsen TL, Holst-Hansen C, Bei M, Thompson EW, Wakeling AE, et al. MCF7/LCC2: a 4-hydroxytamoxifen resistant human breast cancer variant that retains sensitivity to the steroidal antiestrogen ICI 182,780. Cancer Res. 1993;53:3229–32.PubMed
30.
go back to reference Brünner N, Boysen B, Jirus S, Skaar TC, Holst-Hansen C, Lippman J, et al. MCF7/LCC9: an antiestrogen-resistant MCF7 variant in which acquired resistance to the steroidal antiestrogen ICI 182,780 confers an early cross-resistance to the nonsteroidal antiestrogen tamoxifen. Cancer Res. 1997;57:3486–93.PubMed Brünner N, Boysen B, Jirus S, Skaar TC, Holst-Hansen C, Lippman J, et al. MCF7/LCC9: an antiestrogen-resistant MCF7 variant in which acquired resistance to the steroidal antiestrogen ICI 182,780 confers an early cross-resistance to the nonsteroidal antiestrogen tamoxifen. Cancer Res. 1997;57:3486–93.PubMed
31.
go back to reference Dunning MJ, Smith ML, Ritchie ME, Tavare S. BeadArray: R classes and methods for Illumina bead-based data. Bioinformatics. 2007;23:2183–4.PubMedCrossRef Dunning MJ, Smith ML, Ritchie ME, Tavare S. BeadArray: R classes and methods for Illumina bead-based data. Bioinformatics. 2007;23:2183–4.PubMedCrossRef
32.
go back to reference Smyth GK, Michaud J, Scott HS. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics. 2005;21:2067–75.PubMedCrossRef Smyth GK, Michaud J, Scott HS. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics. 2005;21:2067–75.PubMedCrossRef
33.
go back to reference Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128.PubMedPubMedCentralCrossRef Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128.PubMedPubMedCentralCrossRef
34.
go back to reference Totta P, Pesiri V, Marino M, Acconcia F. Lysosomal function is involved in 17β-estradiol-induced estrogen receptor α degradation and cell proliferation. PLoS One. 2014;9:e94880.PubMedPubMedCentralCrossRef Totta P, Pesiri V, Marino M, Acconcia F. Lysosomal function is involved in 17β-estradiol-induced estrogen receptor α degradation and cell proliferation. PLoS One. 2014;9:e94880.PubMedPubMedCentralCrossRef
35.
go back to reference Fiorillo M, Sotgia F, Sisci D, Cappello AR, Lisanti MP. Mitochondrial “power” drives tamoxifen resistance: NQO1 and GCLC are new therapeutic targets in breast cancer. Oncotarget. 2017;8:20309–27.PubMedPubMedCentralCrossRef Fiorillo M, Sotgia F, Sisci D, Cappello AR, Lisanti MP. Mitochondrial “power” drives tamoxifen resistance: NQO1 and GCLC are new therapeutic targets in breast cancer. Oncotarget. 2017;8:20309–27.PubMedPubMedCentralCrossRef
36.
go back to reference Shaw RJ, Liloglou T, Rogers SN, Brown JS, Vaughan ED, Lowe D, et al. Promoter methylation of P16, RAR [beta], E-cadherin, cyclin A1 and cytoglobin in oral cancer: quantitative evaluation using pyrosequencing. Br J Cancer. 2006;94:561–8.PubMedPubMedCentralCrossRef Shaw RJ, Liloglou T, Rogers SN, Brown JS, Vaughan ED, Lowe D, et al. Promoter methylation of P16, RAR [beta], E-cadherin, cyclin A1 and cytoglobin in oral cancer: quantitative evaluation using pyrosequencing. Br J Cancer. 2006;94:561–8.PubMedPubMedCentralCrossRef
37.
go back to reference Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, Zakopoulou RA, et al. Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer. 2009;124:81–7.PubMedCrossRef Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, Zakopoulou RA, et al. Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer. 2009;124:81–7.PubMedCrossRef
38.
go back to reference Cottu P, Bièche I, Assayag FEl Botty R, Chateau-Joubert S, Thuleau A, et al. Acquired resistance to endocrine treatments is associated with tumor-specific molecular changes in patient-derived luminal breast cancer xenografts. Clin Cancer Res. 2014;20:4314–25.PubMedCrossRef Cottu P, Bièche I, Assayag FEl Botty R, Chateau-Joubert S, Thuleau A, et al. Acquired resistance to endocrine treatments is associated with tumor-specific molecular changes in patient-derived luminal breast cancer xenografts. Clin Cancer Res. 2014;20:4314–25.PubMedCrossRef
39.
go back to reference Raha P, Thomas S, Thurn KT, Park J, Munster PN. Combined histone deacetylase inhibition and tamoxifen induces apoptosis in tamoxifen-resistant breast cancer models by reversing Bcl-2 overexpression. Br Cancer Res Treat. 2015;17:26.CrossRef Raha P, Thomas S, Thurn KT, Park J, Munster PN. Combined histone deacetylase inhibition and tamoxifen induces apoptosis in tamoxifen-resistant breast cancer models by reversing Bcl-2 overexpression. Br Cancer Res Treat. 2015;17:26.CrossRef
40.
go back to reference Malorni L, Giuliano M, Migliaccio I, Wang T, Creighton CJ, Lupien M, et al. Blockade of AP1 potentiates endocrine therapy and overcomes resistance. Mol Cancer Res. 2016;14:OF1–OF12.CrossRef Malorni L, Giuliano M, Migliaccio I, Wang T, Creighton CJ, Lupien M, et al. Blockade of AP1 potentiates endocrine therapy and overcomes resistance. Mol Cancer Res. 2016;14:OF1–OF12.CrossRef
41.
go back to reference Poulard C, Jacquemetton J, Tredan O, Cohen PA, Vendrell J, Ghayad SE, et al. Oestrogen non-genomic signalling is activated in tamoxifen-resistant breast cancer. Int.J.Mol.Sci. 2019;20:2733.CrossRef Poulard C, Jacquemetton J, Tredan O, Cohen PA, Vendrell J, Ghayad SE, et al. Oestrogen non-genomic signalling is activated in tamoxifen-resistant breast cancer. Int.J.Mol.Sci. 2019;20:2733.CrossRef
42.
go back to reference Inoue S, Mizushima T, Ide H, Jiang G, Goto T, Nagata Y, et al. ATF2 promotes urothelial cancer outgrowth via cooperation with androgen receptor signalling. Endocrine Con. 2018;7:1397–408.CrossRef Inoue S, Mizushima T, Ide H, Jiang G, Goto T, Nagata Y, et al. ATF2 promotes urothelial cancer outgrowth via cooperation with androgen receptor signalling. Endocrine Con. 2018;7:1397–408.CrossRef
43.
go back to reference De Amicis F, Thirugnansampanthan J, Cui Y, Selever J, Beyer A, Parra I, et al. Androgen receptor overexpression induces tamoxifen resistance in human breast cancer cells. Br Cancer Res Treat. 2010;121:1–11.CrossRef De Amicis F, Thirugnansampanthan J, Cui Y, Selever J, Beyer A, Parra I, et al. Androgen receptor overexpression induces tamoxifen resistance in human breast cancer cells. Br Cancer Res Treat. 2010;121:1–11.CrossRef
44.
go back to reference Ciupek A, Rechoum Y, Gu G, Gelsomino L, Beyer AR, Brusco L, et al. Androgen receptor promotes tamoxifen agonist activity by activation of EGFR in ER alpha-positive breast cancer. Br Cancer Res Treat. 2015;154:225–37.CrossRef Ciupek A, Rechoum Y, Gu G, Gelsomino L, Beyer AR, Brusco L, et al. Androgen receptor promotes tamoxifen agonist activity by activation of EGFR in ER alpha-positive breast cancer. Br Cancer Res Treat. 2015;154:225–37.CrossRef
45.
go back to reference Walluscheck D, Poehlmann A, Hartig R, Schönfeld P, Hotz-Wagenblatt A, et al. ATF2 knockdown reinforces oxidative stress-induced apoptosis in TE7 cancer cells. J Cell Mol Med. 2013;17:976–88.PubMedPubMedCentralCrossRef Walluscheck D, Poehlmann A, Hartig R, Schönfeld P, Hotz-Wagenblatt A, et al. ATF2 knockdown reinforces oxidative stress-induced apoptosis in TE7 cancer cells. J Cell Mol Med. 2013;17:976–88.PubMedPubMedCentralCrossRef
46.
go back to reference Zhang G, Zhang J, Shang D, Qi B, Chen H. Deoxycholic acid inhibited proliferation and induced apoptosis and necrosis by regulating the activity of transcription factors in rat pancreatic acinar cell line AR42J. In Vitro Cell Dev Biol Anim. 2015;51:851–6.PubMedCrossRef Zhang G, Zhang J, Shang D, Qi B, Chen H. Deoxycholic acid inhibited proliferation and induced apoptosis and necrosis by regulating the activity of transcription factors in rat pancreatic acinar cell line AR42J. In Vitro Cell Dev Biol Anim. 2015;51:851–6.PubMedCrossRef
47.
go back to reference An JJ, Shi KJ, Wei W, Hua FY, Ci YL, Jiang Q, et al. The ROS/JNK/ATF2 pathway mediates selenite-induced leukemia NB4 cell cycle arrest and apoptosis in vitro and in vivo. Cell Death Dis. 2013;4:e97.CrossRef An JJ, Shi KJ, Wei W, Hua FY, Ci YL, Jiang Q, et al. The ROS/JNK/ATF2 pathway mediates selenite-induced leukemia NB4 cell cycle arrest and apoptosis in vitro and in vivo. Cell Death Dis. 2013;4:e97.CrossRef
48.
go back to reference Bhoumik A, Gangi L, Ronai Z. Inhibition of melanoma growth and metastasis by ATF2-derived peptides. Cancer Res. 2004;64:8222–30.PubMedCrossRef Bhoumik A, Gangi L, Ronai Z. Inhibition of melanoma growth and metastasis by ATF2-derived peptides. Cancer Res. 2004;64:8222–30.PubMedCrossRef
49.
go back to reference Zhao H, Ou-Yang F, Chen I-F, Hou M-F, Yuan S-SF. Enhanced resistance to tamoxifen by the c-ABL proto-oncogene in breast cancer. Neoplasia. 2010;12:214–23.PubMedPubMedCentralCrossRef Zhao H, Ou-Yang F, Chen I-F, Hou M-F, Yuan S-SF. Enhanced resistance to tamoxifen by the c-ABL proto-oncogene in breast cancer. Neoplasia. 2010;12:214–23.PubMedPubMedCentralCrossRef
50.
go back to reference Bergamaschi A, Madak-Erdogan Z, Kim YJ, Choi Y-L, Lu H, Katzenellenbogen BS. The forkhead transcription factor FOXM1 promotes endocrine resistance and invasiveness in estrogen receptor–positive breast cancer by expansion of stem-like cancer cells. Br Cancer Res. 2014;16:R436.CrossRef Bergamaschi A, Madak-Erdogan Z, Kim YJ, Choi Y-L, Lu H, Katzenellenbogen BS. The forkhead transcription factor FOXM1 promotes endocrine resistance and invasiveness in estrogen receptor–positive breast cancer by expansion of stem-like cancer cells. Br Cancer Res. 2014;16:R436.CrossRef
51.
go back to reference Weigel MT, Banerjee S, Arnedos M, Salter J, A'Hern R, Dowsett M, Martin LA. Enhanced expression of the PDGFR/Abl signaling pathway in aromatase inhibitor-resistant breast cancer. Ann Oncol. 2013;24:126–33.PubMedCrossRef Weigel MT, Banerjee S, Arnedos M, Salter J, A'Hern R, Dowsett M, Martin LA. Enhanced expression of the PDGFR/Abl signaling pathway in aromatase inhibitor-resistant breast cancer. Ann Oncol. 2013;24:126–33.PubMedCrossRef
52.
go back to reference Zhao H, Lo Y-H, Yu L, Wang S-C. Overcoming resistance to fulvestrant (ICI182,780) by downregulating the c-ABL proto-oncogene in breast cancer. Mol Carcinog. 2011;50:383–9.PubMedCrossRef Zhao H, Lo Y-H, Yu L, Wang S-C. Overcoming resistance to fulvestrant (ICI182,780) by downregulating the c-ABL proto-oncogene in breast cancer. Mol Carcinog. 2011;50:383–9.PubMedCrossRef
53.
go back to reference Tripathy D, Im SA, Colleoni M, Franke F, Bardia A, Harbeck N, Hurvitz SA, Chow L, et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol. 2018;19:904–15.CrossRefPubMed Tripathy D, Im SA, Colleoni M, Franke F, Bardia A, Harbeck N, Hurvitz SA, Chow L, et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol. 2018;19:904–15.CrossRefPubMed
54.
go back to reference Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, Harbeck N, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016 Nov 17;375:1925–36.CrossRefPubMed Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, Harbeck N, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016 Nov 17;375:1925–36.CrossRefPubMed
55.
go back to reference Phuong NTT, Kim SK, Lim SC, Kim HS, Kim TH, Lee KY, et al. Role of PTEN promoter methylation in tamoxifen-resistant breast cancer cells. Breast Cancer Res Treat. 2011;130:73–83.PubMedCrossRef Phuong NTT, Kim SK, Lim SC, Kim HS, Kim TH, Lee KY, et al. Role of PTEN promoter methylation in tamoxifen-resistant breast cancer cells. Breast Cancer Res Treat. 2011;130:73–83.PubMedCrossRef
56.
go back to reference Glück S. Consequences of the convergence of multiple alternate pathways on the estrogen receptor in the treatment of metastatic breast cancer. Clin Breast Cancer. 2016;17:79–90.PubMedCrossRef Glück S. Consequences of the convergence of multiple alternate pathways on the estrogen receptor in the treatment of metastatic breast cancer. Clin Breast Cancer. 2016;17:79–90.PubMedCrossRef
57.
go back to reference Ambrosio MR, D’Esposito V, Costa V, Liguoro D, Collina F, Cantile M, et al. Glucose impairs tamoxifen responsiveness modulating connective tissue growth factor in breast cancer cells. Oncotarget. 2017;8:109000–17.PubMedPubMedCentralCrossRef Ambrosio MR, D’Esposito V, Costa V, Liguoro D, Collina F, Cantile M, et al. Glucose impairs tamoxifen responsiveness modulating connective tissue growth factor in breast cancer cells. Oncotarget. 2017;8:109000–17.PubMedPubMedCentralCrossRef
58.
go back to reference Kim JW, Gautam J, Kim JE, Kim JA, Kang KW. Inhibition of tumor growth and angiogenesis of tamoxifen-resistant breast cancer cells by ruxolitinib, a selective JAK2 inhibitor. Oncol Lett. 2019;17:3981–9.PubMedPubMedCentral Kim JW, Gautam J, Kim JE, Kim JA, Kang KW. Inhibition of tumor growth and angiogenesis of tamoxifen-resistant breast cancer cells by ruxolitinib, a selective JAK2 inhibitor. Oncol Lett. 2019;17:3981–9.PubMedPubMedCentral
59.
go back to reference Robertson JF, Ferrero JM, Bourgeois H, Kennecke H, de Boer RH, Jacot W, et al. 2013 Ganitumab with either exemestane or fulvestrant for postmenopausal women with advanced, hormone-receptor-positive breast cancer: a randomised, controlled, double-blind, phase 2 trial. Lancet Oncol. 2013;14:228–35.PubMedCrossRef Robertson JF, Ferrero JM, Bourgeois H, Kennecke H, de Boer RH, Jacot W, et al. 2013 Ganitumab with either exemestane or fulvestrant for postmenopausal women with advanced, hormone-receptor-positive breast cancer: a randomised, controlled, double-blind, phase 2 trial. Lancet Oncol. 2013;14:228–35.PubMedCrossRef
60.
go back to reference Drury SC, Detre S, Leary A, Salter J, Reis-Filho J, Barbashiva V, et al. Changes in breast cancer biomarkers in the IGF-1R/PI3K pathway in recurrent breast cancer after tamoxifen treatment. Endocr Relat Cancer. 2011;18:565–77.PubMedCrossRef Drury SC, Detre S, Leary A, Salter J, Reis-Filho J, Barbashiva V, et al. Changes in breast cancer biomarkers in the IGF-1R/PI3K pathway in recurrent breast cancer after tamoxifen treatment. Endocr Relat Cancer. 2011;18:565–77.PubMedCrossRef
61.
go back to reference Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1809 patients. Breast Cancer Res Treat. 2010;123:725–31.PubMedCrossRef Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1809 patients. Breast Cancer Res Treat. 2010;123:725–31.PubMedCrossRef
62.
go back to reference Mori S, Chang JT, Andrechek ER, Matsumura N, Baba T, Yao G, et al. Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene. 2009;28:2796–805.PubMedPubMedCentralCrossRef Mori S, Chang JT, Andrechek ER, Matsumura N, Baba T, Yao G, et al. Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene. 2009;28:2796–805.PubMedPubMedCentralCrossRef
Metadata
Title
Activating transcription factor-2 (ATF2) is a key determinant of resistance to endocrine treatment in an in vitro model of breast cancer
Authors
Athina Giannoudis
Mohammed Imad Malki
Bharath Rudraraju
Hisham Mohhamed
Suraj Menon
Triantafillos Liloglou
Simak Ali
Jason S. Carroll
Carlo Palmieri
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2020
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-020-01359-7

Other articles of this Issue 1/2020

Breast Cancer Research 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine